
Bypass Pinentry for good
via GnuPG, GPGME and

Pinentry
Seiya Kawashima

September 9th, 2016

More user friendly message
users might click Cancel button

Source: https://gpgtools.org/

https://gpgtools.org/

Environment for bypassing
pinentry for good

1) GPGME-1.6.0
2) GnuPG-2.0.30, GnuPG modern 2.1.15 as of 09/09/2016
3) Pinentry-0.9.7

Bypassing pinentry for bad ?
 806 static int
 807 dialog_run (pinentry_t pinentry, const char *tty_name, const char *tty_type)
 808 {
 /* Comment in all the lines.
 Or replace them with the lines below.
 . . .
 */
!
 pinentry->pin = (char *)malloc(10);
 memcpy(pinentry->pin,”StrongPIN”,9);
!
 /* NUL terminate the passphrase. dialog_run makes sure there is
 enough space for the terminating NUL byte.
 diag.pinentry->pin[diag.pin_len] = 0; */
 pinentry->pin[9] = 0
 pinentry->pin_len = 9;
 return 0;
 }
!
pinentry/pinentry-curse.c

Bypassing pinentry by GnuPG

1) gpg-preset-passphrase command.
2) Flags to cache passphrase in gpg-agent
 such as —max-cache-ttl and —default-cache-ttl

Pros:
 1) Good to hide pinentry until explicitly clearing the cache by
 the users.
 2) Good to hide pinentry from the users for a specified period
 of time.

Cons:
 1) Tries to cache as long as years.
 2) Needs to repeat specifying the next expiration for the cache.
 3) Solves one issue - hiding pinentry.
 4) Tightly couple user information and passphrase.

Bypassing pinentry by GnuPG
What users usually would do for the cache

Source: Keep GnuPG credentials cached for entire user session,
 http://superuser.com/questions/624343/keep-gnupg-credentials-cached-for-entire-user-session

http://superuser.com/questions/624343/keep-gnupg-credentials-cached-for-entire-user-session

Bypassing pinentry by GnuPG

1) gpg-preset-passphrase command.
2) Flags to cache passphrase in gpg-agent
 such as —max-cache-ttl and —default-cache-ttl

Cons:
 1) Tries to cache as long as years.
 2) Needs to repeat specifying the next expiration for the cache.
 3) Solves one issue - hiding pinentry.
 4) Tightly couple user information and passphrase.

Pros:
 1) Good to hide pinentry until explicitly clearing the cache by
 the users.
 2) Good to hide pinentry from the users for a specified period
 of time.

User Account
1) Username
2) Password
3) Email address
4) Billing address

Passphrase

Bypassing pinentry by GnuPG
Tightly coupling

Bypassing pinentry by GnuPG

1) gpg-preset-passphrase command.
2) Flags to cache passphrase in gpg-agent
 such as —max-cache-ttl and —default-cache-ttl

Cons:
 1) Tries to cache as long as years.
 2) Needs to repeat specifying the next expiration for the cache.
 3) Solves one issue - hiding pinentry.
 4) Tightly couple user information and passphrase.

Pros:
 1) Good to hide pinentry until explicitly clearing the cache by
 the users.
 2) Good to hide pinentry from the users for a specified period
 of time.

What GnuPG man says about passphrase

Bypassing pinentry by GnuPG

1) gpg-preset-passphrase command.
2) Flags to cache passphrase in gpg-agent
 such as —max-cache-ttl and —default-cache-ttl

Cons:
 1) Tries to cache as long as years.
 2) Needs to repeat specifying the next expiration for the cache.
 3) Solves one issue - hiding pinentry.
 4) Tightly couple user information and passphrase.

Pros:
 1) Good to hide pinentry until explicitly clearing the cache by
 the users.
 2) Good to hide pinentry from the users for a specified period
 of time.

Bypassing pinentry by pinentry-bypass

1) /pinentry-0.9.7/bypass/pinentry-bypass.c

Pros:
 1) Good to hide pinentry from the uses.
 2) Solves more than one issue.
 1) Hide pinentry from the users.
 2) Loosely couple user information and passphrase.
 3) Generate passphrase for the users.
 4) Regenerate keys for the users.
 3) Doesn’t even force users to type and remember their passphrases.
 4) Doesn’t require to repeat setting up the next expiration for the cache.

User Account

pinentry-bypass

Passphrase

Bypassing pinentry by GnuPG
Loosely coupling

1) Username
2) Password
3) Email address
4) Billing address

Bypassing pinentry by
GnuPG and pinentry-bypass

User Account

Passphrase

By GnuPG By pinentry-bypass

User Account

pinentry-bypass

Passphrase

1) Username
2) Password
3) Email address
4) Billing address

1) Username
2) Password
3) Email address
4) Billing address

Bypassing pinentry by pinentry-bypass

Pros:
 1) Good to hide pinentry from the uses.
 2) Solves more than one issue.
 1) Hide pinentry from the users.
 2) Loosely couple user information and passphrase.
 3) Generate passphrase for the users.
 4) Regenerate keys for the users.
 3) Doesn’t even force users to type and remember their passphrases.
 4) Doesn’t require to repeat setting up the next expiration for the cache.

1) /pinentry-0.9.7/bypass/pinentry-bypass.c

Cons:
 Considered as future work.
 1) How to manage generated keys such as Web Key Directory.

Hierarchy of GnuPG’s ecosystem
gpgme_op_encrypt()
gpgme_op_sign()
gpgme_op_decrypt()
gpgme_op_verify()
…
Builds parameter arguments

Builds parameter arguments

main()
gnupg/g10/gpg.c:1901

main()
pinentry/bypass/pinentry-bypass.c:207
pinentry/curses/pinentry-curses.c:36

Returns success or failure

Parses return value

GPGME

GnuPG

Pinentry

Your
program

Hierarchy of GnuPG’s ecosystem
gpgme_op_encrypt()
gpgme_op_sign()
gpgme_op_decrypt()
gpgme_op_verify()
…
Builds parameter arguments

main()
gnupg/g10/gpg.c:1901

main()
pinentry/bypass/pinentry-bypass.c:207

GPGME

GnuPG

pinentry-bypass

Your
program

How to interact with pinentry-bypass ?

W
hat data passed to pinentry-bypass ? Builds parameter argumentsReturns success or failure

Parses return value

Overview of what was modified

PINENTRY_USER_DATA in gnupg-2.0.30

~/gnupg-2.0.30$ grep -nr --include="*.c" "PINENTRY_USER_DATA"
sm/server.c:233: err = session_env_setenv (opt.session_env, "PINENTRY_USER_DATA",
value);
agent/gpg-agent.c:692: { "DISPLAY", "TERM", "XAUTHORITY", "PINENTRY_USER_DATA",
NULL };
agent/gpg-agent.c:1361: session_env_setenv (ctrl->session_env, "PINENTRY_USER_DATA",
NULL);
agent/command.c:1695: { "GPG_TTY", "DISPLAY", "TERM", "XAUTHORITY",
"PINENTRY_USER_DATA", NULL };
agent/command.c:1963: err = session_env_setenv (ctrl->session_env,
"PINENTRY_USER_DATA", value);
agent/command-ssh.c:3375: {"GPG_TTY", "DISPLAY", "TERM", "XAUTHORITY",
"PINENTRY_USER_DATA", NULL};
agent/call-pinentry.c:199: || !strcmp (name, “PINENTRY_USER_DATA"))
common/simple-pwquery.c:302: /* Send the PINENTRY_USER_DATA variable. */
common/simple-pwquery.c:303: dft_pinentry_user_data = getenv (“PINENTRY_USER_DATA");
common/session-env.c:67: { "PINENTRY_USER_DATA", "pinentry-user-data"}

setenv(
“PINENTRY_USER_DATA”,…)

add_arg(gpg,
“—pinentry-user-data")
gpgme/src/engine-gpg.c:580
add_arg(gpg, …)
gpgme/src/engine-gpg.c:582

set_opt_session_env
("PINENTRY_USER_DATA",
pargs.r.ret_str)
gnupg/g10/gpg.c:2915
value = session_env_getenv
(ctrl->session_env,
“PINENTRY_USER_DATA")
gnupg/agent/call-pinentry.c:380
asprintf(&optstr,
"OPTION pinentry-user-data=%s”,value)
gnupg/agent/call-pinentry.c:384

GPGME GnuPG Pinentry

Overview of what was modified

Your
program

ARGPARSE_s_s(
‘u',
"pinentry-user-data",
"|STRING|User data for pinentry”)
pinentry/pinentry/pinentry.c:691
ext_udata(
pinentry->user_data,uds,”;”,1)
pinentry/bypass/pinentry-
bypass.c:132

What was modified in GPGME
diff --git a/src/engine-gpg.c b/src/engine-gpg.c
index 83befce..9fa9994 100644
--- a/src/engine-gpg.c
+++ b/src/engine-gpg.c
@@ -574,6 +574,15 @@ gpg_new (void **engine, const char
*file_name, const char *home_dir)
 free(tmp);
 }
!
+ _gpgme_getenv ("PINENTRY_USER_DATA", &tmp);
+ if (tmp)
+ {
+ rc = add_arg (gpg, "--pinentry-user-data");
+ if (!rc)
+ add_arg (gpg, tmp);
+ free(tmp);
+ }
+
 leave:
 if (rc)
 gpg_release (gpg);

What was modified in GnuPG
diff --git a/g10/gpg.c b/g10/gpg.c
index 97975fb..97d00c8 100644
--- a/g10/gpg.c
+++ b/g10/gpg.c
@@ -375,6 +375,7 @@ enum cmd_and_opt_values
 oAllowMultipleMessages,
 oNoAllowMultipleMessages,
 oAllowWeakDigestAlgos,
+ oPinentryUserData, !
 oNoop
 };
@@ -777,6 +778,9 @@ static ARGPARSE_OPTS opts[] = {
 ARGPARSE_s_n (oNoop, "no-sk-comments", "@"),
 ARGPARSE_s_n (oNoop, "no-sig-create-check", "@"), !
+ /* User Data passed to pinentry. */
+ ARGPARSE_s_s (oPinentryUserData, "pinentry-user-data", "@"),
+
 ARGPARSE_end ()
 }; !
@@ -2907,7 +2911,9 @@ main (int argc, char **argv)
 case oXauthority:
 set_opt_session_env ("XAUTHORITY", pargs.r.ret_str);
 break;
-
+ case oPinentryUserData:
+ set_opt_session_env ("PINENTRY_USER_DATA", pargs.r.ret_str);
+ break;
 case oLCctype: opt.lc_ctype = pargs.r.ret_str; break;
 case oLCmessages: opt.lc_messages = pargs.r.ret_str; break;

What was modified in GnuPG
diff --git a/agent/call-pinentry.c b/agent/call-pinentry.c
index 5686998..151a155 100644
--- a/agent/call-pinentry.c
+++ b/agent/call-pinentry.c
@@ -377,6 +377,19 @@ start_pinentry (ctrl_t ctrl)
 if (rc)
 return unlock_pinentry (rc);
 }
+ value = session_env_getenv (ctrl->session_env, "PINENTRY_USER_DATA");
+ if (value)
+ {
+ char *optstr;
+ if (asprintf (&optstr, "OPTION pinentry-user-data=%s", value) < 0
)
+ return unlock_pinentry (out_of_core ());
+ rc = assuan_transact (entry_ctx, optstr, NULL, NULL, NULL, NULL,
NULL,
+ NULL);
+ xfree (optstr);
+ if (rc)
+ return unlock_pinentry (rc);
+ }
+
 if (ctrl->lc_ctype)
 {
 char *optstr;

What was modified in Pinentry
1. Set up “—pinentry-user-data” as a parameter

argument for pinentry_parse_opts().

4. Adjusted pinentry-0.9.7/configure.ac.
5. Added pinentry-0.9.7/bypass/Makefile.am

pinentry_cmd_handler_t pinentry_cmd_handler = bypass_cmd_handler; pinentry-bypass.c:203

typedef int (*pinentry_cmd_handler_t) (pinentry_t pin); /pinentry/pinentry.h:214

/* The caller must define this variable to process assuan commands. */
extern pinentry_cmd_handler_t pinentry_cmd_handler; /pinentry/pinentry.h:267

3. Implemented bypass_cmd_handler().

2. Added pinentry-0.9.7/bypass/pinentry-bypass.c.

What was modified in Pinentry

Many options come after this ….

What was modified in Pinentry

What was modified in Pinentry

Many outputs come after this ….

What was modified in Pinentry

gpgme_op_encrypt()
gpgme_op_sign()
gpgme_op_decrypt()
gpgme_op_verify()
…
Builds parameter arguments

Builds parameter arguments

main()
gnupg/g10/gpg.c:1901

main()
pinentry/bypass/pinentry-bypass.c:207

Returns succes or failure

Parses return value

GPGME

GnuPG

pinentry-bypass

Your
program

PINENTRY_USER_DATA

W
hat data passed to pinentry-bypass ?

Overview of what was modified

a;b;c;d;e;f;g;

Overview of what was modified
PINENTRY_USER_DATA

a) Dynamically linked object file path
such as *.so file path.

b) Function name to be called to take
care of logic for bypassing pinentry.

c) User defined user role such as 1 for
user, 2 for service and 255 for root.

d) User name.
e) GnuPG home directory.
f) Root’s PIN.
g) Root’s name.

Overview of what was modified
PINENTRY_USER_DATA

gpgme_op_encrypt()
gpgme_op_sign()
gpgme_op_decrypt()
gpgme_op_verify()
…
Builds parameter arguments

Builds parameter arguments

main()
gnupg/g10/gpg.c:1901

main()
pinentry/bypass/pinentry-bypass.c:207

Returns success or failure

Parses return value

GPGME

GnuPG

pinentry-bypass

Your
program

PINENTRY_USER_DATA

Overview of what was modified

a
;
b
;
c
;
d
;
e
;
f
;
g
;

Demo

Thank you
Have a great lunch!

