
An Advanced Introduction to GnuPG

Neal H. Walfield

August 18, 2017

2

Copyright © 2017 g10 Code GmbH.
This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Contents

I Main Matter 7

1 Introduction 9
1.1 History . 10
1.2 OpenPGP Criticism . 11

1.2.1 Usability . 11
1.2.2 Deniability . 11
1.2.3 Forward Sececy . 12

1.3 Modern Chat Protocols . 12
1.4 Privacy . 13
1.5 Scope . 13

2 A GnuPG Primer 15

3 Cryptography 17

4 OpenPGP 19
4.1 Data at Rest . 20
4.2 Unbuffered Message Processing 22
4.3 OpenPGP Messages . 22
4.4 Encryption . 23

4.4.1 Hybrid Encryption . 24
4.4.2 Algorithm . 25
4.4.3 An Encrypted Message 25

4.5 Signing . 30
4.5.1 Multiple Signers . 30
4.5.2 Algorithm . 31
4.5.3 Example . 32

4.6 Keys . 36

3

4 CONTENTS

4.6.1 Multiple Public and Private Key Pairs 36
4.6.2 Self Signatures . 38
4.6.3 Example . 38

4.7 Key Signing . 43
4.7.1 Local Signatures . 44
4.7.2 Confidence . 44
4.7.3 Trusted Introducers . 45
4.7.4 Non-Revocable Signatures 46
4.7.5 Example . 46

4.8 Revocations . 48
4.9 Notations . 49
4.10 Summary . 50

5 Passwords 51
5.1 Diceware . 51

6 Key Creation 53
6.1 Keys Aren’t Forever, Revocation Certificates Are 54

6.1.1 Backing Up a Revocation Certificate 56
6.1.2 Publishing a Revocation Certificate 57
6.1.3 Recruiting Your Friends 58

6.2 Tweaking, Twiddling, and Frobbing 59
6.3 Security Tokens . 60

6.3.1 Hardware . 61
6.3.2 Creating a Key . 63
6.3.3 Tails . 65
6.3.4 Initializing the Security Token 67
6.3.5 Formatting the Removable Storage Devices 70
6.3.6 Generating the Keys 71
6.3.7 Saving Your Progress 73
6.3.8 Creating a Backup . 74
6.3.9 Copying the Keys to the Security Token 75
6.3.10 Using the Keys . 79
6.3.11 Saving the Revocation Certificate 81
6.3.12 Signing Keys with an Offline Master 81

6.4 Key Expiration . 85
6.5 Subkey Rotation . 86

CONTENTS 5

7 Validating Keys 89
7.1 Key Discovery . 90

8 GnuPG’s Architecture 91
8.1 gpg-connect-agent . 92
8.2 signals . 92
8.3 Assuan . 92
8.4 Debugging . 92
8.5 configuration . 93

9 Good Practices and Tips 95
9.1 Refresh keys. 95
9.2 Key Disclosure . 95
9.3 Backups . 95
9.4 ssh . 95
9.5 Remote gpg-agent . 96

10 MUA Integration 99
10.1 Integration . 101
10.2 Key Creation . 102

10.2.1 Revocation Certificate 104
10.3 Expiration . 105
10.4 Sending Mail . 105

10.4.1 Encryption Keys . 107
10.4.2 BCC Recipients . 108
10.4.3 Saving Drafts . 109
10.4.4 Sent Mails . 109
10.4.5 Attaching Keys . 109

10.5 Reading Mail . 110
10.5.1 Verifying Messages . 110
10.5.2 Multi-part Emails . 113
10.5.3 Unencrypted Cache 114

10.6 Key Management . 114
10.6.1 Key Discovery . 115
10.6.2 Key Verification . 119
10.6.3 TOFU Conflict Resolution 121
10.6.4 Address Book Integration 122

11 Programming with GnuPG 123

6 CONTENTS

12 Misc. 125

Part I

Main Matter

7

Chapter 1

Introduction

GnuPG is an implementation of the OpenPGP protocol, which is used for
encryption and authentication.

GnuPG is used to encrypt email. But, this functionality is not just used
by individuals to preserve their privacy: political activists rely on it to or-
ganize their activities, journalists rely on it to protect their sources, and
lawyers rely on it to protect attorney-client conversations. Jason Reich, the
director of security for BuzzFeed, describes the importance of GnuPG to
journalists this way: "GPG is part of a balanced breakfast of any reporter,
especially one who wants to protect their sources, and be able to be reached
for leaks and things of that nature." [1]. And, Michal Wozniak, the Chief In-
formation Security Officer at the Organized Crime and Corruption Report-
ing Project (OCCRP), said, "I do strongly believe that had we not been using
GnuPG all of this time, many of our sources and many of our journalists,
would be in danger or in jail" [2]. Cindy Cohn, the Executive Director of
the Electronic Frontier Foundation, goes further, and says that the privacy
and security that GnuPG offers makes it "one of the core tools that we need
if we’re going to have functioning self-government in the United States or
around the world" [3].

But, GnuPG is not only used for encrypting email. GnuPG protects
the software updates of nearly all free software-based operating systems
including Debian, Ubuntu, Red Hat, and SUSE. Although less common on
the desktop, these systems power two-thirds of all web sites [4], and are the
dominate platforms used in the cloud computing sector. That means that
even if you don’t directly use GnuPG, if you use the Internet, your personal
data is, in part, being protected by GnuPG.

9

10 CHAPTER 1. INTRODUCTION

And, GnuPG is used for much more. People use it to protect data
archives, such as, backups. Software distributors sign their software with it
so that users can verify the integrity of a copy. Software developers use it to
sign their commits [5]. Organizations like Debian use it to secure internal
processes, such as making sure that a package upload is authorized, that
a vote is legitimate, and that a resignation is authentic. GnuPG is used to
secure Bitcoin wallets. And, GnuPG is used to sign documents.

1.1 History

Werner Koch started GnuPG in 1997 [6]. But GnuPG’s roots lies in PGP,
an encryption program originally written by Phil Zimmermann in 1991 [7].
Zimmermann was a long-time political activist, and wrote PGP to allow
activists to securely store messages on BBSs. Although the source code for
PGP was available, it wasn’t free software. Further, due to its use of RSA
for public-key cryptography, and IDEA for symmetric encryption, PGP was
patent encumbered.

Around 1996, Richard Stallman, the founder of the Free Software Foun-
dation, started appealing to people to create a free replacement for PGP.
Koch was inspired by this speech, and began working on g10, as he ini-
tially called it, which was a reference to the tenth Grundgesetz (the tenth
article of German the constitution), which enshrines the right to private
communication in Germany. Since the reference was considered to be too
obscure even for most Germans, the name GNU Privacy Guard or GnuPG,
for short, was adopted soon after the initial release.

As of 2017, Koch has continued to work on GnuPG as the lead devel-
oper. Since its start, the project has remained relatively small in terms of
the number of contributors. But, it was only in 2012 that Koch found him-
self working alone on GnuPG. Prior to that, the project received enough
funding to employ a couple of developers. In 2012, however, GnuPG had a
funding crisis, and Koch was forced to lay off his last employee. The fund-
ing situation continued to deteriorate, and in 2014 Koch had to take side
jobs unrelated to GnuPG to supplement his income. The situation was un-
sustainable, and Koch nearly gave up. But, friends convinced him to give
a donation campaign one last shot. The response was amazing. Not only
did he receive enough money to fund himself, but he pulled in 250,000 eu-
ros in small donations, and Stripe, Facebook, and the Linux Foundation

1.2. OPENPGP CRITICISM 11

each committed to donating about 50,000 euros per year. Along with some
partially unexpected contracts from the German BSI (the Federal Office for
Information Security), Koch was able to hire five additional developers.

Since then, development of GnuPG has accelerated, and new features
are being added on a regular basis. For instance, Koch developed a new
key discovery protocol called the Web Key Directory (WKD) [8], there is
a new trust model based on TOFU [9], there is official support for a set of
Python bindings, and the GnuPG developers are actively contributing to
Enigmail.

1.2 OpenPGP Criticism

OpenPGP has been widely criticized. There are three main criticisms:
GnuPG isn’t easy to use, GnuPG doesn’t support deniability, like Off The
Record (OTR), and GnuPG doesn’t support forward secrecy.

Respond to: https://medium.com/@mshelton/how-to-lose-friends-and-anger-journalists-with-pgp-b5b6d078a315
Respond a bit more in depth to the Matthew Green blog post: https:

//blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/

Summarize Filippo articles: https://arstechnica.com/security/
2016/12/op-ed-im-giving-up-on-pgp/ https://arstechnica.
com/information-technology/2016/12/signal-does-not-replace-pgp/

1.2.1 Usability

GnuPG is infamous for being hard to use. There is a fair amount of truth to
this. Nevertheless, the argument can be made that some of the difficulties
are required to achieve the support that it wants to achieve. For instance, it
is unavoidable that people who are worried about active attackers need to
think about authentication.

1.2.2 Deniability

Deniability (or deniable authentication) is the property that participants
in a conversation are able to authenticate each other’s messages, but they
cannot later prove this to a third party. In OTR, this works by having the
participants use a shared key for authenticating messages. Thus, if Alice
knows that she didn’t send a given authenticated message, then it must
have come from Bob. This style of authentication is fundamentally different

https://medium.com/@mshelton/how-to-lose-friends-and-anger-journalists-with-pgp-b5b6d078a315
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://arstechnica.com/security/2016/12/op-ed-im-giving-up-on-pgp/
https://arstechnica.com/security/2016/12/op-ed-im-giving-up-on-pgp/
https://arstechnica.com/information-technology/2016/12/signal-does-not-replace-pgp/
https://arstechnica.com/information-technology/2016/12/signal-does-not-replace-pgp/

12 CHAPTER 1. INTRODUCTION

from digital signatures, which provide strong evidence that a particular
person created or at least endorsed a signed message.

Why deniability is perhaps not so useful as one might imagine:

https://debian-administration.org/users/dkg/weblog/104

1.2.3 Forward Sececy

How important is forward secrecy?

1.3 Modern Chat Protocols

Over the past few years, the amount of activity in the encryption space
has increased dramatically. One of the catalysts was almost certainly the
Snowden leaks in June 2013, which not only motivated activists to do some
work, but also sensitized the public to the work’s importance. The area
that has probably received the most attention has been in the end-to-end
instant messaging space [10]. In particular, Signal, whose protocol has been
adopted by WhatsApp and Google Allo, has received very strong endorse-
ments from many prominent members of the InfoSec community. In fact,
the creators of the Signal protocol, Moxie Marlinspike and Trevor Perrin,
received the 2017 Levchin Prize at the Real World Crypto Symposium for
their work on the protocol.

The first major difference between OpenPGP and Signal is with respect
to their scope: signal focuses exclusively on real-time communication. This
narrow focus has a number of advantages in terms of security. In particular,
because communication is near real time, clients can negotiate parameters,
and it is possible to implement forward secrecy.

The other major difference is that OpenPGP focuses on a decentralized
model whereas these solutions tend to be walled gardens.

Signal uses the telephone number as a stable identifier, which is a strong
identifier.

https://jilliancyork.com/2017/08/03/i-dont-want-to-give-out-my-phone-number-a-gendered-security-issue/

Unlike GnuPG, these tools focus on real-time communication.

https://debian-administration.org/users/dkg/weblog/104
https://jilliancyork.com/2017/08/03/i-dont-want-to-give-out-my-phone-number-a-gendered-security-issue/

1.4. PRIVACY 13

1.4 Privacy

Address nothing to hide argument (that misses the point—everyone needs
privacy).

1.5 Scope

As its title suggests, this book is intended to be an advanced introduction
to GnuPG. It is explicitly not a reference manual. That is, the focus is not
on providing a highly technical, exhaustive guide covering exactly what
GnuPG does, but on gradually building up reader’s understanding. This
isn’t a value judgment; I believe that the two are complementary. And, my
hope is that after reading this book, you’ll have a solid understanding of
GnuPG’s internals, and can quickly use GnuPG’s reference manual to fill
in any required details.

14 CHAPTER 1. INTRODUCTION

Chapter 2

A GnuPG Primer

Examples of how to use gpg from the command line. Cover all of the im-
portant stuff and little to none of the esoteric options. E.g., generating an
online key, encryption, decryption, signing (inline or detached, clearsign),
verifying sigs, using the --edit-key interface. Adding a new user id.
Retiring a user id. Revoking a key. Signing someone’s key. Setting owner
trust. To armor or not to armor. Talk about importing and exporting keys
(including import and export filters). Some useful options.

Listing keys. Talk about the different search methods, e.g., prefixing @
to only search on the email.

Note that the right way to interact with GPG is not by screen scraping,
but by using gpg ’s --status-fd family of options or using the GPGME
library (or one of the many bindings), which remove the need to parse
--status-fd ’s output.

GPG is not a library. Talk about how this arose historically. The ten-
sion between providing a user interface and a programming API (former
wants convenience and implication, the latter not.) If you want to program
GnuPG then it is recommended that you use GPGME (or a binding built on
top of GPGME). A lower level interface is --status-fd. Has been around
since GnuPG 1.2. Example of why it is important to use this interface.

Groups/aliases

15

16 CHAPTER 2. A GNUPG PRIMER

Chapter 3

Cryptography

Most readers of this book probably already understand how public-key
cryptography works. Perhaps not at the mathematical level, but at least
at the conceptual. But, most readers of this book also need to be able to
explain public-key cryptography for lay people.

1. What is cryptography? Basically scrambling a text (using permuta-
tion and substitution).

2. Example: most people have probably secured a zip file with a pass-
word.

3. How does that work? A simple approach is to imagine that each let-
ter is a number—A is 0, B is 1, C is 2, etc.—and then add (without
carrying—that is B (2) + Z (25) is 27, 27 is larger than 25, so do: 27 -
26 = 1 and take 1, i.e., do modular 26 arithmetic) the plain text to the
password. For instance consider the text "Meet me in Mantua" and
the password "tank boil throw letter".

MEETMEINMANTUA

• TANKBOILTHROWLETTER

. . . .

If you know the password, you can easily reverse the process. But if
you don’t know the password, it is effectively impossible to recover
the plaintext given the ciphertext.

17

18 CHAPTER 3. CRYPTOGRAPHY

Note: if the password is at least as long the text and password is never
reused, this is referred to as a one-time pad and is the strong known
cryptography.

4. This approach doesn’t scale. If you want to communicate with multi-
ple people, you need a remember a password for each person.

5. Problem solved using public-key cryptography. Instead of sharing
a password, each person has a so-called public key and a so-called
private key. Using a public key cryptography, for Romeo to encrypt
a message to Juliet, he just needs to know her public key. Juliet can
decrypt the message using her private key. The nice thing about the
public key is that it can be shared with anyone.

6. How does it work? Based on so-called one-way puzzles. Consider
factoring 221. To do this, you could try every number from 2 to
the square root of 221 and see if it evenly divides 221. For 221, this
doesn’t take that long to do, but for a 1000 digit number, it could take
forever—even for a computer and although there are some improve-
ments over to the simply method, none are significantly faster. But, if
I told you that the factors are 13 and 17, they you can verify that very
quickly. This is basically how public-key cryptography works. There
are also different one-way puzzles.

7. How to imagine public key encryption? We can think of the public
key as the blue prints for a safe (or padlock) that anyone can build
around a message, but once that message is in the safe, it can only be
opened using the recipients corresponding private key.

Explain signing.
Give other examples of how to explain public key cryptography.
Talk about threat modeling. What are you trying to protect? From

whom? What resources does the adversary have?

Chapter 4

OpenPGP

GnuPG is an implementation of OpenPGP, an encryption standard pub-
lished by the Internet Engineering Task Force (IETF). The IETF’s main ac-
tivity is the development and promotion of standards related to the Inter-
net. Since its formation in 1986, the IETF has standardized many ubiqui-
tous Internet protocols including the HyperText Transfer Protocol (HTTP),
and the Transport Layer Security (TLS) protocol. Each standard is managed
by a working group, and anyone can participate by joining the appropriate
mailing list. The working group responsible for OpenPGP is fittingly called
The OpenPGP Working Group.

OpenPGP consists of three main parts. First, OpenPGP specifies a col-
lection of cryptographic algorithms for encrypting and decrypting data,
generating and verifying digital signatures, and deriving keys from pass-
words (so-called key derivication functions or KDFs). These are built on
top of more basic cryptographic building blocks like SHA-1 (a hash algo-
rithm), AES (a symmetric cipher), and RSA (an asymmetric cipher, which
is also known as a public-key algorithm). For the most part, the specifi-
cation does not define these algorithms; it simply says which algorithms
should be used where and how to use them. Second, OpenPGP defines a
packet-based message format. This format is used not only for exchang-
ing encrypted messages, but also for transferring keys and key meta-data.
Finally, OpenPGP includes functionality to help manage keys. This func-
tionality includes the ability to revoke a key, and to sign keys.

The first version of the OpenPGP protocol was published in 1996 as
RFC 1991. (Although, at that point it was still known as the PGP prototcol.)
Since then, the protocol has undergone two major revisions. The most re-

19

20 CHAPTER 4. OPENPGP

cent version was published in 2007 as RFC 4880. In 2015, the OpenPGP
community again reformed the OpenPGP working group to update the
specification [11].

The major goals for the next version are: the deprecation of some old
cryptographic algorithms like SHA-1, the introduction of some new cryp-
tographic algorithms based on elliptic curves, the addition of modern mes-
sage integrity protection in the form of something like Authenticated En-
cryption with Associated Data (AEAD), and an updated fingerprint format.

From an application programmer or user’s perspective, the working
group is not considering any major changes to the existing functionality;
they are primarily tightening the standard’s security and cleaning up a few
issues. This is true even of OpenPGP’s use of SHA-1, which, although
SHA-1 has many flaws, is still considered safe in the way that OpenPGP
uses it. That is, the changes are mostly to proactively—not reactively—
address weaknesses. In the words of the cryptographer Peter Gutmann,
"OpenPGP is still too good enough, there’s lots of things there that you can
nitpick but nothing really fatal, or even close to fatal" [12].

4.1 Data at Rest

OpenPGP is used to protect both data at rest as well as data in motion.
Whereas data at rest refers to data that is stored, e.g., on a hard drive, data
in motion refers to data that is transferred, e.g., via HTTP. Thus, an encryp-
tion scheme that only protects data in motion, such as TLS, removes the
encryption on receipt; the data is only protected on the wire. Another way
to think about the difference between data at rest and data in motion is that
encryption that protects data at rest protects it in time and space whereas
encryption that protects data in motion only protects it in space. Yet an-
other way to think about the difference is that data at rest is to the tar or
zip tools as data in motion is to HTTP or XMPP.

The decision to protect not only data in motion, but also data at rest
using the same scheme significantly constrains the solution space. In par-
ticular, because data at rest may be accessed asynchronously with respect
to the encryption, there is no possibility to negociate parameters on the fly.

Consider an encrypted backup. When you encrypt the data, you can
only use the strongest encryption that is available at the time of the encryp-
tion. When you access the data 10 years later, your implementation needs

4.1. DATA AT REST 21

to support that now old encryption algorithm; there is no way to go back
in time and say to your former self, "could you use this implementation
instead?"

An additional consequence is that upgrading the cryptography be-
comes very difficult. It is not possible to completely deprecate old algo-
rithms, because old messages (like our backup) still need to be decrypted.
Similarly, since people continue to use old software, we often cannot use
the latest and greatest encryption scheme, because they might not be able
to decrypt the data!

Another result of this decision to protect data at rest is that enabling for-
ward secrecy is not possible. Forward secrecy is an oft-lauded encryption
property, which prevents old encrypted messages from being decrypted if
the private key material is somehow compromised. Forward secrecy works
by mutating the key material in time. This scheme is fine if you never need
to decrypt old messages (as is typically the case for data transferred via
HTTPS, say), but doesn’t work at all for data at rest: if you want to decrypt
some data a week later, nevermind 10 years later, then you won’t be able to
if you’ve destroyed the private key material needed to decrypt it!

Perfect secrecy becomes even more complicated when a user has mul-
tiple devices, and all devices should be able to decrypt all messages.
OpenPGP doesn’t require that those devices somehow synchronize their
state after the private key is copied. But, some type of synchronization is
necessary for forward secrecy.

This raises the question: why have a single algorithm for both data in
motion and data at rest? The reason is that OpenPGP messages are often
not stored on a trusted host or even processed on a trusted host before being
stored. Consider email. Email is normally stored on a mail server. Even
after the mail is read, it remains on the mail server so that it can be read
later—potentially years later—on a different device. Thus, even assuming
that we could harden the security of the transport layer, it is not clear that
when the data is on a mail server, it is any less vulnerable than when it
is on the wire. In fact, data breaches at huge companies entrusted with
highly personal information from millions or even billions of users, such as
Yahoo! and Adult Friend Finder, are evidence that this is not the case.

22 CHAPTER 4. OPENPGP

4.2 Unbuffered Message Processing

OpenPGP is designed to allow unbuffered message processing. This is par-
tially achieved by mandating that message packets be sorted topologically.
That is, if a packet has a dependency, that dependency precedes it in the
message.

This property is important for several reasons. First, it allows an
OpenPGP implementation to run on memory constrainted systems while
being confident that the implementation can in practice process arbitrarily
large messages. Second, it ensures that streaming tools can be used, e.g.,
something like ... | gpg -e -r key | ssh Finally, this prop-
erty helps avoid some denial of service attacks, which might otherwise be
possible by crafting a malicious message.

In practice, there are some limitations to the degree to which buffering
can be avoided. Consider a pipeline in which a message is verified, and the
output of the message is somehow processed. Because the OpenPGP im-
plementation requires the whole message to verify it, to process this mes-
sage in a streaming fashion, the OpenPGP implementation has to output
the data before it has been verified. Now, if the consumer can’t process
the output in a way that can be reverted in the case of a validation failure,
the consumer must first buffer the data. But, even if it is possible for the
consumer to recover from a validation failure, it’s probably error prone if
only because code on an error path is rarely tested. Thus, although the
OpenPGP implementation could avoid buffering data in this situation, it
has merely shifted the burden.

Now, there are some more advanced cryptographic constructs, such as
hash chaining, that make it possible to verify the data bit-by-bit. These tech-
niques would help ensure that the consumer only processes verified data,
which is an improvement over the status quo. But, they don’t completely
solve the problem, because they can’t protect against message truncation.

4.3 OpenPGP Messages

An OpenPGP message is basically a sequences of packets. OpenPGP de-
fines 17 different packet types that are used to not only encrypt and sign
messages, but also to transfer keys and key signatures or certifications,
which are used in the web of trust. The format is extensible, and this has

4.4. ENCRYPTION 23

already been used to add new features.
An example of a packet type is the symmetrically encrypted data (SED)

packet. A SED packet contains data that has been encrypted using a sym-
metric algorithm, such as AES. The contents of the packet are zero or more
OpenPGP packets. That is, OpenPGP messages are nested; a SED packet is
a container. Typically, a SED contains either a signature packet or a com-
pressed data packet, which in turns holds a literal data packet, but the spec-
ification doesn’t impose any limitations.

This flexibility in message composition is referred to as agility. It has
both advantages and disadvantages.

A useful advantage that this flexibility offers is that the format can be
used in unforeseen situations. For instance, the web key directory (WKD)
uses the non-standard sign+encrypt+sign pattern to facilitate spam detec-
tion prior to decryption.

Two important disadvantages of this flexibility are that parsing OpenPGP
messages is more complicated, and assigning meaning to unusual struc-
tures can be difficult. As an example of the latter, consider a message with
two literal data packets, the first of which is signed. Assuming the sig-
nature is valid, should an implementation report that the message is valid?
Probably not. The second part could have been forged. Alternatively a mail
program could show both parts and indicate that only the first part is au-
thentic. But, this requires educating the user to understand these nuances.
Unfortunately educating users is known to be extremely difficult.

4.4 Encryption

Most lay people and even many technical people assume that encryption
includes both an integrity check and authentication. In reality, encryption
by itself provides neither. This assumption perhaps arises due to condition-
ing from web browsers that not only conflate the two concepts, but treat a
connection secured with a self-signed certificate (which provides encryp-
tion, but not authentication), worse than those that use neither encryption
nor authentication. Additionally, in recent years, the term end-to-end en-
cryption has entered the mainstream. Although authentication is as impor-
tant as encryption in such systems, only encryption is mentioned. Be that
as it may, in OpenPGP, encryption and signing are separate, independent
operations.

24 CHAPTER 4. OPENPGP

4.4.1 Hybrid Encryption

OpenPGP is a hybrid cryptosystem. A hybrid cryptosystem first encrypts
data using a symmetric encryption algorithm like AES with a random so-
called session key, and then encrypts the session key using the recipient’s
public key. The result is stored in a so-call public-key encrypted session key
(PK-ESK) packet.

There are two important reasons for doing this as well as several addi-
tional advantages.

First, public key encryption is thousands of times slower than symmet-
ric encryption. Since a session key is just a single block of data (which is
N bits for an N bit RSA key), but the data to encrypt could be megabytes or
even gigabytes large, this saves a lot of processing power.

Second, it is not unusual to encrypt a message to multiple recipients.
The most obvious example of this is in the context of email where an en-
crypted email is sent to multiple people. But even in other contexts, having
multiple recipients is not unusual. Specifically, when encrypting data to an-
other party, most programs will also encrypt the data to the person doing
the encryption so that the data remains readable and auditable.

An advantage of this approach is that it is possible to do message-based
key escrow. Thus, a company wouldn’t need to have access to each em-
ployee’s private key, but whenever the employee decrypted an email, the
session key could automatically be reencrypted with a special escrow key.

Similarly, if law enforcement forces you to reveal the encryption key for
some messages, it is sufficient to provide the session keys for decrypting the
subpoenaed messages. If you had instead provided your private key, law
enforcement could read any message that had been encrypted to you. (In
GnuPG, you can extract the session key using the --show-session-key
option.)

Finally, using hybrid encryption, it is possible to encrypt to both public
keys and passwords. To encrypt a message using a password, OpenPGP
specifies a key derivation function (S2K), which is used to generate a sym-
metric key. (This is saved in a so-called symmetric-key encrypted session key
(SK-ESK) packet.) OpenPGP allows the symmetric key to be used directly
as the session key, but it can just as well be used to encrypt a session key.
In practice, this is primarily interesting to ensure that the sender is able to
later decrypt the contents of the message by also encrypting the session key
to her public key.

4.4. ENCRYPTION 25

4.4.2 Algorithm

Encryption in OpenPGP is a more or less standard hybrid encryption
scheme:

1. A random session key is generated.

2. For each recipient, the OpenPGP implementation encrypts the ses-
sion key using the recipient’s public key, and emits a public-key en-
crypted session key (PK-ESK) packet.

3. If the data should be encrypted using a password, the same thing is
done, but instead of emitted a PK-ESK packet, a session-key encrypted
session key (SK-ESK) packet is emitted.

4. Encrypt the actual data using the session key.

OpenPGP supports multiple symmetric encryption algorithms. To de-
termine which one to use, the OpenPGP implementation selects one from
the intersection of the recipients’ preferred algorithms. This information
isn’t negotiated in real time with the recipients (even when this might
in theory be possible), but is stored alongside the recipient’s public key
(specifically, in a user ID’s self-signature). Typically, this is just a list of
the algorithms that the OpenPGP implementation that generated the key
supports at the time the key was created, but it can be updated to reflect
changes in the implementation, and may be customized by expert users.
Since all implementations are required to at least support TripleDES, and it
appears implicitly at the end of the list, the intersection is never empty.

4.4.3 An Encrypted Message

To better understand how messages are laid out, the following example
shows the innards of an encrypted message. This output was created
using GnuPG’s --list-packets option. hot dump, which is part of
hOpenPGP, and pgpdump can do something similar.

$ echo ’Let us sojourn in Mantua!’ | \
> gpg --encrypt -r juliet@gnupg.net | \
> gpg --list-packets
gpg: encrypted with 2048-bit RSA key, ID C1A010A1D38C4BB8, created 2017-07-07

26 CHAPTER 4. OPENPGP

"Juliet Capulet <juliet@gnupg.net>"
gpg: encrypted with 2048-bit RSA key, ID 5B905AF0423ABB52, created 2017-07-07

"Romeo Montague <romeo@gnupg.net>"
off=0 ctb=85 tag=1 hlen=3 plen=268
:pubkey enc packet: version 3, algo 1, keyid C1A010A1D38C4BB8
data: [2046 bits]
off=271 ctb=85 tag=1 hlen=3 plen=268
:pubkey enc packet: version 3, algo 1, keyid 5B905AF0423ABB52
data: [2046 bits]
off=542 ctb=d2 tag=18 hlen=2 plen=85 new-ctb
:encrypted data packet:
length: 85
mdc_method: 2
off=563 ctb=a3 tag=8 hlen=1 plen=0 indeterminate
:compressed packet: algo=2
off=565 ctb=cb tag=11 hlen=2 plen=32 new-ctb
:literal data packet:
mode b (62), created 1499445579, name="",
raw data: 26 bytes

The example shows a message that Romeo encrypted to Juliet. (Due to
limitations of the OpenPGP format—OpenPGP only supports timestamps
between 1970 and 2106—Romeo forward dated the creation time of his
key.) The first thing that we notice is that even though Romeo only spec-
ified a single recipient (using the -r option), the message is encrypted to
two keys: his and Juliet’s. This is because Romeo has the encrypt-to op-
tion set in his gpg.conf file so that he can always read messages that he
encrypts to someone else.

Packet Metadata

After listing the recipients, gpg outputs each packet. Each packet starts
with a line preceded by a #. This line shows some meta-data and the
packet’s header. Specifically, off indicates the offset of the packet within
the stream (this may not be accurate if there are compressed packets); ctb
(Content Tag Byte) includes the type of the packet, and some information
about the length of the packet (if this is a new format packet, then new-ctb
will appear towards the end of the line); tag is the type of the packet as ex-

4.4. ENCRYPTION 27

tracted from the ctb; and, hlen and plen are the header and body lengths,
respectively.

Sometimes the length of a packet is not known apriori. In this case,
plen will be 0 and indeterminate or partial will appear towards the
end of the line. This can occur when the data is streamed. indeterminate
means that all data until the end of the message belongs to this packet;
partial means the packet uses a chunked encoding method to encode
the data. The mechanism is similar to HTTP’s chunked transfer encoding
method. These encoding schemes are essential for supporting unbuffered
operations. See Section 4.2.2.4 of RFC 4880 for more details.

The PK-ESK Packets

The first two packets in the message are PK-ESK packets. Each of these
holds the session key encrypted to a recipient. A PK-ESK packet also in-
cludes the 64-bit key ID of key that the session key was encrypt to.

If the key ID wasn’t included, then a recipient wouldn’t know whether
a given PK-ESK packet is encrypted with her or someone else’s key and
she would just have to try to decrypt them one by one. The obvious conse-
quence is that CPU cycles could be wasted. But, the more important reason
for avoiding a decryption attempt is that the user might have to unlock
multiple private keys. This can seriously impact an application’s usability.

Avoiding this UX annoyance by including the key ID in the PK-ESK has
a cost: it leaks meta-data. In practice, however, this information is exposed
in other places, e.g., at the SMTP level. Nevertheless, OpenPGP provides a
mechanism to hide this meta-data by setting the key ID to 0, which means
the key ID is speculative. Such key IDs are also referred to as wild card key
IDs.

A speculative key ID can be set in GnuPG by either specifying --throw-keyids
to clear the key ID field for all recipients, or --hidden-recipient in
place of --recipient to clear the key ID field for a particular recipient.

The Encrypted Data Packet

Immediately following the PK-ESK packets is an encrypted data packet.
This ordering is mandatory: it ensures that buffering is not required, be-
cause the key needed to decrypt the packet is stored prior to the data that
it decrypts. As already mentioned, an encrypted data packet is a container,

28 CHAPTER 4. OPENPGP

which contains 0 or more OpenPGP packets. This is not obvious from the
output of the --list-packets command, because it doesn’t show the
message’s tree structure. In this case, as is usually the case, the encrypted
data packet contains a single packet.

In OpenPGP, there are actually two types of encrypted data pack-
ets: Symmetrically Encrypted Data (SED) packets and Symmetrically En-
crypted Integrity Protected data (SEIP) packets. Although the former are
technically allowed by the standard, they are deprecated in practice due
to security concerns. For instance, it is possible to conduct an oracle at-
tack [13], and message extension and deletion attacks are also possible.
Consequently, when GnuPG encounters such a packet, it emits a warning.
GnuPG itself will not emit an encrypted packet without integrity protec-
tion.

We can see that the encrypted data packet includes integrity protec-
tion based on the packet’s tag (18 instead of 9), and the presence of the
mdc_method field in the above output.

1. Modification Detection Codes

MDC stands for Modification Detection Code. Like a message au-
thentication code (MAC), an MDC can verify a message’s integrity.
But, unlike a MAC, an MDC doesn’t say anything about its authen-
ticity. A common criticism leveled at the MDC system is that using an
HMAC would have been better since it is better understood. Ignoring
that the MDC system has proven to be sufficient for its intended pur-
pose, using an HMAC wasn’t really an option when the problem was
discussed: HMACs and MDCs were developed concurrently. (For
more historical notes, see [14].)

Prior to the introduction of the MDC system in RFC 4880, it was only
possible to reliably detect integrity violations using signatures. Signa-
tures, however, have the disadvantage that they expose the signer’s
identity, which is sometimes undesirable.

MDC works by computing the SHA-1 over the clear text and the head
of the MDC packet. (The rest of the MDC packet is the computed
hash.) That is, the hash effectively violates the packet framing. But,
this is exactly the behavior that is required to fully ensure the data’s
integrity: by also including the head of the MDC packet in the hash,
extension and removal attacks are mitigated. The following example

4.4. ENCRYPTION 29

illustrates how it works:

+------+-----------------------------------+-------------+
| SEIP | Data (e.g. a literal data packet) | MDC hash |
+------+-----------------------------------+-------------+

\ / ^
‘--------------------------------------’ |

SHA-1 -----------------------------’

The mdc_method parameter above seems to suggest that there are
multiple MDC methods. This is not the case, and was explicitly
avoided to prevent downgrade and cross-grade attacks; the value of
2 is simply SHA-1’s OpenPGP algorithm identifier. But even though
SHA-1 has since been broken, the relevant security properties for the
MDC system remain intact. Nevertheless, the working group is con-
sidering replacing the MDC system with one based on Authenticated
Encryption with Associated Data (AEAD), which has other useful
properties.

As a final note, the MDC packet is not shown in the output of
--list-packets. This is a technical limitation of GnuPG, which
has to do with the way the MDC packet is processed. But, given that
--list-packets is only a debugging interface and not intended for
programmatic use, this limitation is unlikely to be fixed.

Compressed Packet

The compressed packet is nested within the encrypted packet. RFC 4880
specifies three different compression algorithms—ZIP, ZLIB, and BZip2—but
notes that they are optional. But even though compression is not required,
the RFC recommends it as an operationally useful (even if not rigorous)
form of integrity protection. Unfortunately, it has been shown that com-
pressing data prior to encryption can enable a chosen plaintext attack as
demonstrated by the CRIME on TLS, and BREACH on HTTP attacks.

Literal Data

Nested within the compression packet is a literal data packet. A literal data
packet contains not only the cleartext, but also a bit of metadata. In partic-
ular, a literal packet includes a formatting field, which indicates whether

30 CHAPTER 4. OPENPGP

the contents are binary data or text, and, in the latter case, whether the text
is believed to be UTF-8 formatted. The packet also contains a filename,
which is helpful when transferring a file, but is mostly ignored by GnuPG
in practice. And, it contains a timestamp. GnuPG sets the timestamp to the
current time when the packet is created (not the file’s mtime).

It is worth pointing out that when GnuPG is told to decrypt data
(gpg --decrypt), it doesn’t look for an encrypted message to decrypt,
but processes the message and tries to decrypt any encypted data that it
encounters. This subtle difference in behavior can be important, because if
GnuPG is told to decrypt a message with just a literal packet, it will simply
output the contents of the literal packet without warning the user that the
data was not actually encrypted. If a program uses the ability to decrypt a
message as an authentication check (e.g., in AutoCrypt’s Setup Message),
this behavior could lead to subtle attacks [15].

4.5 Signing

A signature provides cryptographic proof of both the signed data’s in-
tegrity and its authenticity—assuming the key used to sign the data is
trusted. That is, like a checksum, a signature can be used to make sure
that the data was not modified in transit. But unlike a checksum, a signa-
ture can also provide proof of the data’s origin (or at least, who signed off
on the message).

Note: the exact semantics of a signature are not defined by the standard.
This is done on purpose, and is viewed by the RFC editors as a feature, be-
cause, in the end, a signature’s meaning is determined by the actual human
users of the system—some will be more casual, and some will be more rig-
orous no matter what some standard says.

4.5.1 Multiple Signers

In OpenPGP, it is possible for a single message to include multiple signa-
tures created by different keys. This mechanism is useful when disparate
parties want to sign a document. For instance, multiple developers might
sign released software. Rather than providing each signature separately, it
is more useful to combine them into a single file.

In GnuPG, this can be done by specifying each of the keys on the com-
mand line. For instance:

4.5. SIGNING 31

$ echo ’Good-bye cruel world!’ | gpg -s -u romeo -u juliet

A crippling disadvantage of this approach is that all keys must be avail-
able at the time that the signature is generated, which is rarely practical.

Although OpenPGP’s packetized message format makes combining
signatures relatively easy, GnuPG does not provide support for this. Never-
theless, in practice, writing an ad-hoc script is straightforward (some hints
are here: [16]). And, in the special case that the signatures in question are
detached signatures, combining them is actually trivial: they just need to be
concatenated together as shown below:

$ echo ’Romeo and Juliet forever!’ > note.txt
$ gpg --detach-sign -u romeo --output - note.txt > note.txt.romeo.sig
$ gpg --detach-sign -u juliet --output - note.txt > note.txt.juliet.sig
$ cat note.txt.romeo.sig note.txt.juliet.sig > note.txt.sig
$ gpg --verify note.txt.sig note.txt
gpg: Signature made Tue 11 Jul 2017 11:52:48 AM CEST
gpg: using RSA key D6636A9EB82A91E94DDEE5066B284A5BE2297415
gpg: issuer "romeo@gnupg.net"
gpg: Good signature from "Romeo Montague <romeo@gnupg.net>" [full]
gpg: Signature made Tue 11 Jul 2017 11:52:59 AM CEST
gpg: using RSA key E5156E507DCB8D63AC89E5334954FDC67A46B4C5
gpg: issuer "juliet@gnupg.net"
gpg: Good signature from "Juliet Capulet <juliet@gnupg.net>" [full]

In the above examples, the signatures are not nested. That is, they are
both only over the data, and one could remove either signature from the
OpenPGP message without impacting the validity of the other signature.

Sometimes, it can be useful to nest signatures. For instance, a notary
might want to not only notarize some document, but also the client’s sig-
nature over that document. OpenPGP also provides native support for this
type of signature. In fact, both types can be present in the same message.
GnuPG does not currently support nested signatures.

4.5.2 Algorithm

As in the encryption case, signing is a two-step process. First, the data to
be signed is hashed, and then the resulting hash is signed using public-
key cryptography. This two-step process is primarily motivated by perfor-
mance considerations.

32 CHAPTER 4. OPENPGP

The exact algorithm that is used is slightly different depending on
whether the signature should be inline or detached. We start by describ-
ing how an inline signature is created.

1. Emit a so-called One-Pass Signature (OPS) packet. An OPS packet con-
tains meta-data (what hash algorithm to use, etc.) as well as framing
information (specifically, whether the signature is nested or not).

2. Hash and emit the data to sign.

3. Emit a signature packet, which includes the computed hash and the
signature.

As its name and the implementation suggest, the OPS packet makes
it possible to both create a signature, and verify it without buffering any
data. Since detached signatures are separate from the main OpenPGP mes-
sage, and OPS packets are effectively redundant, to generate a detached
signature, we just skip the first step. A limitation of detached signatures is
that they are over the entire OpenPGP message. Thus, nesting them is not
possible.

4.5.3 Example

Using our above example with inline signatures, the resulting message has
the following packets:

$ echo ’Good-bye cruel world!’ \
> | gpg -s -u romeo -u juliet | gpg --list-packets
off=0 ctb=a3 tag=8 hlen=1 plen=0 indeterminate
:compressed packet: algo=1
off=2 ctb=90 tag=4 hlen=2 plen=13
:onepass_sig packet: keyid 4954FDC67A46B4C5
version 3, sigclass 0x00, digest 8, pubkey 1, last=0
off=17 ctb=90 tag=4 hlen=2 plen=13
:onepass_sig packet: keyid 6B284A5BE2297415
version 3, sigclass 0x00, digest 8, pubkey 1, last=1
off=32 ctb=cb tag=11 hlen=2 plen=28 new-ctb
:literal data packet:
mode b (62), created 1499772743, name="",
raw data: 22 bytes

4.5. SIGNING 33

off=62 ctb=89 tag=2 hlen=3 plen=333
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499772743, md5len 0, sigclass 0x00
digest algo 8, begin of digest 88 56
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-11)
hashed subpkt 28 len 24 (signer’s user ID)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2048 bits]
off=398 ctb=89 tag=2 hlen=3 plen=333
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1499772743, md5len 0, sigclass 0x00
digest algo 8, begin of digest c5 e3
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-11)
hashed subpkt 28 len 24 (signer’s user ID)
subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2047 bits]

Compressed Packet

Again, we see that the message starts with a compression container. Since
the length of the data is not known apriori, the length is marked as
indeterminate, which means that the packet includes all of the data un-
til the end of the message.

One-Pass Signature Packets

The next two packets are OPS packets.
These packets include the hash algorithm that was used to generate

the signature. This information needs to be available beforehand so that
the signature can be verified in a streaming fashion. The hash algorithm,
which is also known as the message digest algorithm, is indicated by the
digest field in the output.

Another piece of information that is necessary to verify the data in a
streaming manner is how to interpret the data to sign. This is determined
by the signature’s class (sigclass). Normally, OPS packets are only used
with documents (as opposed to keys or user IDs, which are so small that

34 CHAPTER 4. OPENPGP

buffering isn’t an issue). OpenPGP defines two types of documents: bi-
nary data and text data whose respective classes are 0 and 1. For binary
documents, the data is hashed as is; for text documents, the OpenPGP im-
plementation first converts line endings to <CR><LF> before hashing.

The OPS packets also include the signer’s key ID and the public key al-
gorithm used to generate the signature. This information is strictly speak-
ing redundant as it is also stored in the matching signature packet, but
it can help the implementation identify several common cases in which it
can’t verify the signature prior to actually computing the hash. Specifically,
the implementation can’t verify a signature if the signer’s public key is un-
available, or the public key algorithm used to compute the signature is not
supported (even if the hash algorithm is supported). In such cases, the im-
plementation can fail early, or just skip the hashing, which saves some CPU
cycles.

Finally, OPS packets include framing information. In GnuPG, this is
referred to as the last signature flag. In the above output, it is referred to
last. If last is 1, then the signature is over all of the following data up to
the OPS’s corresponding signature packet; if last is 0, then the signature
is not nested and is only over the data following the next OPS packet with
last equal to 1.

Given this definition of last, we see that the first signature in the above
example is not nested (last is 0), but the second is. Thus, both signatures
are over the data; the outer signature is not over the inner signature, just
the data.

To better understand how signatures nest, consider the following ex-
ample, which shows an OpenPGP message with three signatures. The first
three packets are OPS packets, the middle packet is a literal data packet,
and the last three packets are the OPS’ corresponding signature packets.

__
,-----> / \

+-----------+-----------+-----------+------+---------+---------+---------+
| A, last=1 | B, last=0 | C, last=1 | Data | C’s sig | B’s sig | A’s sig |
+-----------+-----------+-----------+------+---------+---------+---------+

| ‘----> ____/
‘------------------^

Working our way in, we see that last is set for A’s signature. Thus,
A’s signature is over everything immediately following the OPS packet up

4.5. SIGNING 35

to the matching signature packet. That is, it is over not only the data, but
also over B and C’s signatures. In contrast, in B’s OPS packet, last is
clear. Thus, B’s signature is over everything following the next OPS packet
with last set to 1, i.e., everything follow C’s OPS packet, up to, but not
including, the signature packet matching C’s OPS packet. That is, like C’s
signature, B’s signature is only over the literal data packet, not the data
packet and C’s signature.

Literal Data

The literal data packet contains the document to be signed. Of course, if the
signatures are nested, then the signature may include other data as well.

Signature Packet

The last two packets are the signature packets that match the OPS packets
at the start of the message. Like braces in a programming language, the first
OPS packet matches the last signature packet, and the second OPS packet
matches the second to last signature packet.

Except for the nesting information, the signature packet includes every-
thing present in the OPS packet as well as some additional meta-data, and
the actual signature.

The additional meta-data usually includes a timestamp (the OpenPGP
Signature Creation Time subpacket), and the user ID that was used to make
the signature (the OpenPGP Issuer subpacket). There are several other
pieces of metadata that can be added, but they are not usually set in this
context.

The issuer is usually used by a mail user agent to make sure the alleged
sender matches the signer. For instance, Romeo might have verified his
father’s key, but his father might try to trick him by sending him an email
that appears to be from Juliet. Because he knows that Romeo always checks
a signature’s validity, he could just sign the message with his own key. If
the mail user agent only shows whether a signature is valid, then Romeo
might be tricked. Making sure the from header matches the issuer catches
this attack.

36 CHAPTER 4. OPENPGP

4.6 Keys

As mentioned above, OpenPGP messages are not only used to transport
documents, but are also used to transport keys and key signatures.

In OpenPGP, a so-call key is a lot more than just a public and private
key pair. Modern OpenPGP keys normally include at least two key pairs
as well as a fair amount of meta-data.

4.6.1 Multiple Public and Private Key Pairs

OpenPGP supports multiple key pairs for several reasons.
First, although it is possible to use the same key pair for encryption

and signing, if you do, then the act of decrypting a message is equivalent
to signing it (and vice versa), which could be abused by an adversary. In
practice, this particular attack is prevented by the use of distinguishing
padding schemes. But, using separate keys avoids this problem and pre-
vents any issues that may be discovered in the future.

Second, having multiple keys makes it possible to largely separate iden-
tity from key lifetime. In particular, OpenPGP has the concept of primary
keys and subkeys. The primary key is used to identify the OpenPGP key.
That is, a key’s fingerprint is derived from this key, and is independent of
any subkeys. This makes it possible for a user to revoke individual subkeys
without changing her identity. For instance, each year you could generate
a new encryption and a new signing subkey, and revoke the old ones, and
there would be no need to create new business cards or even inform your
contacts that you have new keys, because, assuming their software is con-
figured to regularly refresh your key, their OpenPGP implementation will
automatically find the new subkeys since your primary key did not change.
In fact, this type of key rotation approximates forward secrecy [17].

To support an arbitrary number of keys, primary keys and subkeys are
marked with so-called capabilities. There are (perhaps surprisingly) four
capabilities:

1. Encryption

2. Signing

3. Certification

4. Authorization

4.6. KEYS 37

An encryption capable key can be used for encryption, and a signing
capable key can be used for signing documents. But, if a key does not have
the encryption capability, then it should not be used for encryption. The
certification capability indicates that a key can be used for signing keys (as
opposed to documents). Thus, since a subkey requires a signature to be
valid, only a certification-capable key can be used to create a new subkey.
Finally, the authorization capability is used for access control. This is pri-
marily useful for using an OpenPGP key with ssh.

It is entirely possible for a key to have multiple capabilities. As men-
tioned above, it is not advisable to use a key for both signing and encryp-
tion, but since mathematically certification is just signing, it is reasonable
to mark a key as both signing and certification capable.

Whether this is reasonable depends on how the user wants to manage
keys. For instance, if a signing-capable key is compromised, it is possi-
ble to recover without generating an entirely new OpenPGP key. But, if
a certification-capable key is compromised, then the attacker effectively
owns the identity, and the only way to recover is to completely revoke the
OpenPGP key and create a new one. This only works if users physically
separate the certification key from the signing key, e.g., by only storing the
certification key on an offline computer. Since most users don’t do this,
GnuPG defaults to making the primary key both certification capable and
signing capable.

An OpenPGP key can have multiple valid (i.e., not expired and not re-
voked) subkeys with the same capability. In this case, the RFC does not
specify which subkey should be used; it is up to the implementation.

If there are multiple encryption-capable keys, GnuPG uses the newest
valid subkey. But this is not the de facto standard. For instance, OpenKey-
chain encrypts a message to all valid encryption-capable keys.

The OpenKeychain behavior has the advantage that one can store dif-
ferent keys on different devices. Then if a particular device is compro-
mised, only the subkeys on that device need to be rotated. But, opera-
tionally, the advantages for encryption-capable subkeys are not that large,
since an encryption-capable key protects past traffic. That is, if an encryp-
tion key is compromised, all messages encrypted to it are compromised.
Thus, a message is compromised if any encryption key is compromised.
So, in this case, one might as well just use a single encryption key.

This line of logic does not apply to signing-capable keys. If a signing-
capable subkey is compromised, the attacker can forge messages. But, if

38 CHAPTER 4. OPENPGP

the user has one signing-capable key per device and revokes just the single
signing-capable subkey that was compromised, then the attacker will be
thwarted and only signatures created using that key will fail to verify after
it has been revoked.

4.6.2 Self Signatures

As mentioned previously, an OpenPGP fingerprint is derived only from the
primary key, not the subkeys. This makes sense, since new subkeys can be
added at any time. Thus, some mechanism is needed to associate subkeys
with the corresponding primary key. Further, a mechanism is needed to as-
sociate meta-data with an OpenPGP key. Both of these problems are solved
using the same mechanism: self-signatures.

A self-signature is like a normal signature, but instead of being over a
document, the signature is over structured text, and it is stored alongside
the OpenPGP key. A self-signature can only be created (or rather, is only
honored if it was created) by a certification-capable key. Since the signature
can’t be forged, it effectively creates an unforgable binding between the
OpenPGP key and the data. Thus, to determine if a subkey really belongs
to a given OpenPGP key, it is sufficient to check whether there is a valid
self-signature.

Because OpenPGP packets can be combined in whatever way a user
wants, an attacker who controls a user’s network connection may not be
able to modify individual packets without detection, but can drop pack-
ets. Thus, if an attacker has compromised a user’s key, the user notices,
and revokes her key, she is still not safe if the attacker also controls the
network path, and filters out the revocation certificate thereby preventing
other users from learning that the key was compromised.

4.6.3 Example

The following example shows Romeo’s key. This key was created by
GnuPG using the default parameters. Thus, it has a primary key, which
is signing- and certification-capable, and a single subkey, which is encryp-
tion capable.

$ gpg --export romeo | gpg --list-packets
off=0 ctb=99 tag=6 hlen=3 plen=269
:public key packet:

4.6. KEYS 39

version 4, algo 1, created 1499443140, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 6B284A5BE2297415
off=272 ctb=b4 tag=13 hlen=2 plen=41
:user ID packet: "Romeo Montague <romeo@gnupg.net>"
off=315 ctb=89 tag=2 hlen=3 plen=340
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499443140, md5len 0, sigclass 0x13
digest algo 8, begin of digest 71 f6
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 03)
hashed subpkt 9 len 4 (key expires after 2y0d0h0m)
hashed subpkt 11 len 4 (pref-sym-algos: 9 8 7 2)
hashed subpkt 21 len 5 (pref-hash-algos: 8 9 10 11 2)
hashed subpkt 22 len 3 (pref-zip-algos: 2 3 1)
hashed subpkt 30 len 1 (features: 01)
hashed subpkt 23 len 1 (keyserver preferences: 80)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2048 bits]
off=658 ctb=b9 tag=14 hlen=3 plen=269
:public sub key packet:
version 4, algo 1, created 1499443140, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 5B905AF0423ABB52
off=930 ctb=89 tag=2 hlen=3 plen=310
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499443140, md5len 0, sigclass 0x18
digest algo 8, begin of digest 19 f8
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 0C)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2043 bits]

40 CHAPTER 4. OPENPGP

Public Key Packet

The public key packet normally comes first. It just contains a minimum
amount of information: the public key algorithm (algo), the public key
parameters (pkey), the creation time (created), and the expiry time
(expires). Although the --list-packets output shows the key ID,
this is not included in the packet; it is shown as a matter of convenience.
Including it in the packet would be redundant, because it is derived from
the creation time and the public key parameters.

In the above listing, there is no self-signature for the public-key packet.
The parameters are, however, protected by the self-signature over each user
ID packet, which is over not only the user ID packet, but also the primary
key. It is possible to make signatures just over the primary key. But, this is
typically only used in the case of key revocation.

Not using a self-signature for the key means that meta-data like user
preferences needs to be stored someplace else. By convention, they are
stored in a user ID’s self-signature. Consequently, if you have multiple
user IDs, you could have multiple sets of conflicting preferences. This is
actually by design: the relevant preferences are determined by how the
key is addressed, which allows different sets of preferences for different
environments. So, if you have two user IDs, one for work, and one for
home, when someone uses your key to encrypt to your work email address,
the preferences are taken from the work user ID. If the caller just specifies
the key ID, then the preferences are taken from the so-called primary user
ID. (The primary user ID is the user ID with the primary user ID flag set in
its self-signature. If there are no user IDs that have this flag set or multiple
user IDs, then RFC 4880 recommends using the user ID with the newest
self-signature.) Thus, because it is reasonable to have different preferences
for different user IDs, if the intended user ID is known, it—and not the key
ID—should be used to address the key.

By convention, self-signatures immediately follow the packet that they
certify. As such, any direct key signatures would immediately follow the
public key prior to any user ID or subkey packets. In practice, this is not
always the case due to implementation bugs or malicious intent. Thus,
on import, GnuPG will attempt to fix any out-of-order packets. This can
involve some overhead, but this additional overhead is only incurred if the
packets are actually out of order.

When some meta-data is changed, a new self-signature is created. Since

4.6. KEYS 41

data that is publish can’t easily be deleted, OpenPGP treats the key as an
append-only log. The result is that a user ID packet, for instance, might
have multiple self signatures.

In general, if there are multiple self-signed packets for a given packet,
only the newest one is used. One important exception is for revocation cer-
tificates and any designated revoker settings: it is necessary to respect these
even if a later self signature would somehow override them, because this
capability could be used by an attacker to invalidate a revocation, which
would effectively make revocations of compromised keys impossible.

User ID Packet

User IDs are stored between the public key and any subkeys. In this exam-
ple, the key only contains a single user ID.

A user ID packet just contains a single value: a free-form string. By con-
vention (per the RFC), this string is an RFC 2822-style mailbox, i.e., a UTF-8
encoded string of the form Name <email@example.com> (Comment).

Normally, a user ID doesn’t require a comment, and, like Romeo’s
key, most keys don’t have one. Nevertheless, even though comments can
(rarely!) be useful for advanced users, it is recommended that most tools
not offer users the option to set it, because most people don’t understand
what they are for.

There are two main uses for comments: to distinguish security levels
and roles. Thus, if a user wants to have two OpenPGP keys associated
with a given email address, one for low-security communication, which
is stored directly on the device thereby allowing immediate decryption,
and one for high security communication, which is, say, stored on an air-
gapped computer and therefore may introduce a long delay if the user is
not near the air-gapped computer, comments along the lines of "day-to-day
key" and "high security key," respectively, might be appropriate. Similarly,
if a developer has a key that is only used for signing commits and releases,
a reasonable comment on that key could be "dist sig". Daniel Kahn Gill-
mor takes an even more conservative stance, and argues that even these
comments are probably unnecessary [18].

It is also possible to use an image as a user ID. In such cases, the image
is stored in a so-called user attribute packet. One problem with images
is that they can be fairly large. Since images like old signatures can’t be
deleted once they are published, and they are downloaded whenever a key

42 CHAPTER 4. OPENPGP

is retrieved, it is currently recommended that images be limited to just a
few kilobytes of data.

Images can be useful since many people are able to more quickly as-
sociate a person with that person’s likeness than with her name. Thus, an
image could be shown in a Jabber client or a mail user agent. However,
this should probably only be done for validated keys to avoid suggesting
authenticity when there is no evidence thereof. Another possible use for
images is in a graphical depiction of a path in the web of trust.

User ID Self Signature

By convention, the user ID self-signature immediately follows the user ID.
In addition to binding the user ID to the primary key, it also contains ad-
ditional metadata. As noted above, there may be multiple self-signatures,
and normally only the newest is used.

The signature is self-describing. It includes the key that was used to
create the signature, the algorithm, etc. The sigclass subpacket is 0x13,
which means that this signature is over a user ID.

The signature includes a number of hashed subpackets. Hashed sub-
packets are effectively key-value pairs that are validated by the signature.
The OpenPGP specification includes 22 different subpackets including so-
called notation data, which can be used to store arbitrary data. (Notations
are describing towards the end of this chapter.)

In this example, there are 10 subpackets. Some of the subpackets
provide information about the signature itself. This is the case for the
issuer fpr, sig created and issuer key ID subpackets. Some of
them provide information about the primary key. This is the case for
the key flags, and key expires after subpackets. The key flags
subpacket is primarily used for indicating the primary key’s capabilities.
The key expires after subpacket indicates when the key expires. An
expiration can be extended by creating a new self-signature with a later ex-
piration time. Note: the expiration time is relative to the key’s—not the self-
signature’s—creation time. And, the remaining subpackets describe user
and implementation preferences. pref-sym-algos, pref-hash-algos,
and pref-zip-algos specify what symmetric, hash and compression al-
gorithms, respectively, the user’s OpenPGP implementation supports, and
the user wants when using this user ID. features describes what ad-
vanced features the OpenPGP implementation supports. Currently, there

4.7. KEY SIGNING 43

is only one flag defined, which indicates that the OpenPGP implementa-
tion supports the MDC system. And, keyserver preferences is a set
of flags indicating how the key server should handle the key.

With the exception of the issuer key ID, all of the subpackets are
prefixed with hashed. This indicates that this data is part of the signed
data. Subpackets that are not hashed are considered advisory, because an
attacker may modify them without detection in transit.

There is also a Preferred Key Server subpacket. But, to avoid leaking
metadata, GnuPG ignores this option by default.

Public Subkey Packet

The public subkey packets follow the user ID packets. Other than their
type, these packets are effectively identical to the public key packet.

Public Subkey Self Signature

Like user ID packets, a public subkey packet requires a self-signature to
validate the key and bind it to the primary key. Typically, a subkey packet
contains just a few pieces of meta-data, because preferences are stored in
user ID self signatures.

There are two minor differences, which are worth pointing out. First,
whereas the sigclass field for user ID is 0x13, the sigclass for public
subkeys is 0x18. Second, if the subkey is signing capable, then the self-
signature must also have a so-called back signature in an embedded signa-
ture subpacket created by the signing key over the primary key and the
subkey. Obviously, this back signature should not be created for an en-
cryption key based on the aforementioned attacks.

4.7 Key Signing

OpenPGP allows users to validate each other’s keys using signatures.
Thus, if Romeo is convinced that Juliet controls the key 0x4954FDC67A46B4C5,
then he could certify it (i.e., sign it) using his OpenPGP key. There are two
main reasons why Romeo would want to certify someone’s key.

First, a certification mechanism of this sort enables the OpenPGP imple-
mentation to determine whether a key is valid. This information is critical
when Romeo wants to verify a signed document. In that case, Romeo is

44 CHAPTER 4. OPENPGP

not just interested in whether the signature is mathematically valid, and
the data has not be corrupted in transit, but he also wants to know whether
the signature was really created by Juliet. Unfortunately, there is no way
for computers to figure this out without some help from users. Likewise,
when Romeo sends an email to Juliet, he wants to be confident that he is
really using Juliet’s key. It is completely possible that Romeo could have a
key that allegedly belongs to Juliet without realizing it (anyone can create
a key with any user ID, and upload it to the key servers).

The other reason that a signature is useful is that it provides a mech-
anism for Romeo’s contacts to indirectly verify Juliet’s key. That is, when
Romeo shares this signature with others (e.g., by publishing it on a key
server), then people who trust him (and this is essential!) to validate other
people’s keys, i.e., to be a so-called trusted introducer, could use this signa-
ture to find a valid key for Juliet. The network induced on the signatures is
referred to as the web of trust although it would be more accurate to refer
to is as the web of verifications.

Unfortunately, publishing signatures has the unfortunate side-effect of
making the user’s social graph public. This can have grave implications
beyond the privacy concerns. For instance, it could be used to link a source
to a journalist.

4.7.1 Local Signatures

If a signature shouldn’t be published, it is possible to mark it as being un-
exportable. To do this, one would create a local signature. This is done in
GnuPG by using --lsign-key instead of --sign-key to sign the key. At
a technical level, this causes an Exportable Certification subpacket
to be included in the signature with the value of 0.

Unfortunately, using local signatures is not without problems: it is
possible to export local signatures and accidentally upload them to a key
server, and the key server implementations do not automatically strip local
signatures on import.

4.7.2 Confidence

When someone verifies a key, she doesn’t always have the same degree of
confidence that the verification is correct. For instance, when Romeo signs
Juliet’s key, he is almost certainly convinced that Juliet really controls the

4.7. KEY SIGNING 45

stated key. On the other hand, if Romeo is at the pub and meets Iago, and
he asks him to sign his key, Romeo is almost certainly less confident that
Iago controls the stated key. This is the case even if Iago shows him his
government issued identification papers. And, it is also the case if he sends
an encrypted email to the email address in Iago’s user ID, and receives a
signed reply with a shared secret code.

OpenPGP provides a mechanism for expressing different degrees of
confidence in the form of three confidence levels ranging from "the person
said she controls the key" to "I’m confident she controls the stated key" as
well as a generic, "no comment," level. Other than completely ignoring the
weakest certification level, this information is not included in web of trust
calculations by GnuPG. Thus, for all intents and purposes, it is just gratu-
itous meta-data. As such, it is better to always use a generic certification
level [19]. This is what GnuPG does by default.

4.7.3 Trusted Introducers

When signing a key, it is possible to indicate that the key holder should
be a trusted introducer. For instance, an organization may have a single
key, say pgp@company.com, that they use to sign all of their employees’
keys. If employees sign pgp@company.com using a trust signature, then
anyone who trusts, say, alice@company.com, will, as usual, consider
pgp@company.com to be not only verified, but, due to the trust signa-
ture, a trusted introducer. Consequently, that person will also consider any
keys that pgp@company.com signed to be verified, which, in this case, is
everyone in the company. The following example illustrates this idea:

juliet@ alice@ pgp@ bob
example -- tsign --> company -- tsign --> company -- sign --> @company
.org .com .com .com

In GnuPG, Juliet doesn’t actually have to use a trust signature to sign
alice@company.com’s key: she can just use a normal signature and then
set the ownertrust for alice@company.com appropriately.

Trust signatures are very powerful and can also be very dangerous. If
Romeo considers Juliet to be a trusted introducer, and Juliet has tsign ed
her father’s key, then any key that Juliet’s father signs will be considered
verified. Juliet’s father could abuse this fact to trick Romeo into trusting a
key that he forged for Juliet.

46 CHAPTER 4. OPENPGP

Trust signatures can be constrained. For instance, in the above ex-
ample, Alice probably wants to limit the scope of her trust signature of
pgp@company.com’s key to just those user IDs associated with company.com.
To support this, OpenPGP allows a regular expression to be associated with
a trust signature.

A trust signature can also make not just immediate connections trusted,
but also indirect connections. This is extremely dangerous and proba-
bly only makes sense in very limited situations. For instance, in a very
large company, each department might have the equivalent of the above
pgp@company.com key, and there is a company-wide key that tsign s
each department’s key. In this case, Alice might sign the company-wide
key with a depth of 2 instead of 1. (When Alice uses a trust level of 1, she
means that anyone that the company verifies is considered verified. A trust
level of 0 is equivalent to a normal signature; it doesn’t create any trusted
introducers.)

In GnuPG, it is currently not easy to modify a signature. For instance
if you want to convert a normal signature into a trust signature, gpg will
complain that the key is already signed. To change a signature type or
modify a trust signature, it is first necessary to revoke the existing signature
using the revsig command in the --edit-key interface.

4.7.4 Non-Revocable Signatures

Occasionally, it can be useful to make a long-term commitment to a signa-
ture. This can be done by setting the non-revocable flag. In GnuPG, this is
done using the nrsign command in the --edit-key interface.

4.7.5 Example

The following example shows Juliet’s key including Romeo’s signature of
her key.

$ gpg --export juliet | gpg --list-packets
off=0 ctb=99 tag=6 hlen=3 plen=269
:public key packet:
version 4, algo 1, created 1499443081, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 4954FDC67A46B4C5

4.7. KEY SIGNING 47

off=272 ctb=b4 tag=13 hlen=2 plen=41
:user ID packet: "Juliet Capulet <juliet@gnupg.net>"
off=315 ctb=89 tag=2 hlen=3 plen=340
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1499443081, md5len 0, sigclass 0x13
digest algo 8, begin of digest 59 1a
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 03)
hashed subpkt 9 len 4 (key expires after 2y0d0h0m)
hashed subpkt 11 len 4 (pref-sym-algos: 9 8 7 2)
hashed subpkt 21 len 5 (pref-hash-algos: 8 9 10 11 2)
hashed subpkt 22 len 3 (pref-zip-algos: 2 3 1)
hashed subpkt 30 len 1 (features: 01)
hashed subpkt 23 len 1 (keyserver preferences: 80)
subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2047 bits]
off=658 ctb=89 tag=2 hlen=3 plen=307
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499445515, md5len 0, sigclass 0x10
digest algo 8, begin of digest c6 a3
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-07)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2046 bits]
off=968 ctb=b9 tag=14 hlen=3 plen=269
:public sub key packet:
version 4, algo 1, created 1499443081, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: C1A010A1D38C4BB8
off=1240 ctb=89 tag=2 hlen=3 plen=310
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1499443081, md5len 0, sigclass 0x18
digest algo 8, begin of digest ee 3f
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 0C)

48 CHAPTER 4. OPENPGP

subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2047 bits]

The listing follows the usual format described above. The first packet
is the public key packet, which is followed by a user ID packet and its self
signature. And, at the end comes the subkey key and its self signature.

There is one small difference, however. In this listing, Juliet’s user
ID is followed by not one, but two signatures. And, the second one is
not a self-signature, but Romeo’s certification signature: we can see from
the issuer fpr subpacket that Romeo, not Juliet, created this signature.
There are two important things to observe here.

First, Romeo’s signature is associated with Juliet’s key, not his key. Once
it is clear that the signature says something about Juliet’s key and not
Romeo’s, this makes sense. Nevertheless, many beginners don’t under-
stand this and think that they somehow own the signature. Unfortunately,
this arrangement can lead to denial of service attacks. For instance, vandals
could create many signatures on a particular key so that it becomes so large
that it can’t be imported.

Second, certification signatures are associated with user IDs and not
with keys. This avoids bait-and-switch type attacks. Consider Paris who
convinces Romeo to sign his key. If Romeo signed the key, and not the
user ID, then Paris could simply revoke the user ID and replace it with
another, say, Juliet’s. Since Romeo would still consider the key to be valid,
Paris could possibly trick him into believing a message from the key is from
Juliet.

4.8 Revocations

If a key has been compromised or simply retired, it is essential to revoke it
so that other people don’t accidentally use it. It is also important to revoke
a user ID if the identity is no longer valid, e.g., when leaving an organiza-
tion, but keeping the same key. Occasionally, it can be useful to revoke a
user ID certification. For instance, you should revoke a certification if: you
find out that you signed the wrong key; the person who controlled the key
somehow lost control of it (e.g., he forgot the password, and doesn’t have a
revocation certificate); or, you find out that you signed an impostor’s key.

The following example shows what Juliet’s key looks like when she re-
vokes her own key (the output has been truncated):

4.9. NOTATIONS 49

$ gpg --gen-revoke juliet | gpg --import
...
$ gpg --export juliet | gpg --list-packets
off=0 ctb=99 tag=6 hlen=3 plen=269
:public key packet:
version 4, algo 1, created 1499443081, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 4954FDC67A46B4C5
off=272 ctb=89 tag=2 hlen=3 plen=310
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1500052199, md5len 0, sigclass 0x20
digest algo 8, begin of digest 04 ca
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-14)
hashed subpkt 29 len 1 (revocation reason 0x02 ())
subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2048 bits]
off=585 ctb=b4 tag=13 hlen=2 plen=41
:user ID packet: "Juliet Capulet <juliet@gnupg.net>"
...

The revocation is the second packet. It is a self signature on the pri-
mary key. We know that the packet is a revocation certificate based on the
sigclass (0x20) as well as the revocation reason subpacket. The
revocation reason allows the user to say why the key is revoked. Here,
the value is 0x2, which means that the key was compromised. This sub-
packet can also include a human-readable string. In this case, Juliet did not
provide any additional information. But, in the case that the key is being
rotated, it might be helpful to include the new key’s fingerprint. Of course,
this is of limited use, since it is not machine readable.

4.9 Notations

RFC 4880 allows signatures to contain arbitrary data. This mechanism can
be extremely useful for extending the OpenPGP system. But, despite its
availability, they aren’t generally used. One example of how they could
be used was considered by the Debian project, which thought about using

50 CHAPTER 4. OPENPGP

notations to store additional information about how a developer’s identity
was checked [20].

Notations are key value pairs. The key must be of the form key@example.com.
The domain is included to avoid naming conflicts. Although the value can
be any arbitrary data, GnuPG currently only supports free-form strings.

One limitations of notations is that as they are stored in signature sub-
packets, they must fit into the 64 kilobytes of space available to signature
subpackets. (Strictly speaking, the hashed area is limited to 64 kilobytes of
subpackets and the unhashed area has the same limitation, but using the
unhashed area is not advisable.)

4.10 Summary

This chapter has presented the important details of the OpenPGP standard.
This introduction wasn’t intended for someone who is planning to write an
OpenPGP parser, but to provide a rough overview of the system. Many de-
tails have been omitted, as well as several minor features (yes, for better or
worse, OpenPGP is that feature rich). For those looking for more informa-
tion, the RFC is probably the best place to start: it is highly readable, and
this introduction should hopefully make it easy to navigate.

Chapter 5

Passwords

What are passwords used for (symmetric encryption and protecting private
key). Passwords are not used to protect asymmetric encryption. The reason
for having a password is to protect the key if the device is compromised
(e.g., malware or stolen). Thus, a weak password does not mean weak
transport security; the security of the transport is the e.g. RSA encryption.
If threat model is typical of a private individual, then using a password
manager and a relative weak password is acceptable.

How to generate a strong password: need to be able to measure entropy.
Long passphrase doesn’t mean anything: if it is a line from a song, it is
probably weak. NSA probably tries all of Wikipedia in various forms in
the first few hours of trying to crack your password. The only secure way
is to use diceware.

Snowden: "Assume your adversary is capable of one trillion guesses
per second." To withstand one year, need 65 bits of entropy! How to mea-
sure a password’s entropy? Need a random password. But that’s impossi-
ble to memorize. Unless we encode it smartly!

5.1 Diceware

Encode using a simple word list

• /dev/random? 1k words (10-bits entropy per word)

• dice? 64 = 1296 words (10.3-bits entropy)

Secure even if adversary knows the word list!

51

52 CHAPTER 5. PASSWORDS

Examples:

1. able

2. about

3. above

Required length: 80 bits = good = 8 words 120 bits = strong = 12 words
Examples:

• percent burst able smash opposite ready blind stab

• pipe after harm person split seize radar about

Word lists: Diceware (8k). PGP Biometric word list (512). Voice of
America’s simple English word list (1.5k)

Chapter 6

Key Creation

Today, creating an OpenPGP key could hardly be easier or less error prone.
It’s as simple as thinking of a password and using gpg ’s --quick-gen-key
command:

$ gpg --quick-gen-key ’Juliet Capulet <juliet@gnupg.net>’
About to create a key for:

"Juliet Capulet <juliet@gnupg.net>"

Continue? (Y/n) y
...
gpg: revocation certificate stored as
’/home/jc/.gnupg/openpgp-revocs.d/98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2.rev’
public and secret key created and signed.

pub rsa2048 2017-08-11 [SC] [expires: 2019-08-11]
98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2

uid Juliet Capulet <juliet@gnupg.net>
sub rsa2048 2017-08-11 [E]

(The above confirmation prompt can be suppressed by including the
--batch option, which, as its name suggests, is designed for batch oper-
ations. For batch operations, the raw output of gpg shouldn’t be parsed,
but, instead, --status-fd should be used to get a stable interface. Also,
in this case, --pinentry-mode loopback --passphrase-fd X can
be used to supply a password.)

53

54 CHAPTER 6. KEY CREATION

If you have multiple email addresses, then it is useful to also add them
to your key if they are in the same trust domain. (For instance, work and
private email should often be kept separate.) This can be done just as
painlessly using the --quick-add-uid option:

$ gpg --quick-add-uid 98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2 \
> ’Juliet Capulet <juliet@riseup.net>’

For most users, the only important thing left to do is to backup the
revocation certificate (this is explained in the next section), and publish the
key, so that others can find it:

$ gpg --send-key 98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2
gpg: sending key EACAE136B8AF8CC2 to hkps://hkps.pool.sks-keyservers.net

For users with stronger security requirements—those users who are not
just worried about protecting their privacy—we recommend that they use a
security token instead of an online key so that if the device is compromised,
an attacker cannot get access to the secret key material. This is actually very
easy: any program can normally access any file. Thus, using an online key,
it is necessary to trust all programs that run on your system. Although
setting up a security token—the focus of Section 6.3—is more work, the
day-to-day use of a security token is no more complicated than an online
key.

If you are replacing an existing key, then it is strongly recommended
that you have the old key sign the new one, and the new key sign the old
one so that there is strong, machine readable evidence that the two keys are
controlled by the same party. This information is used by gpg in the TOFU
trust model, for instance, to avoid spurious conflicts.

6.1 Keys Aren’t Forever, Revocation Certificates Are

There are several reasons for why you might want to create a new key.
The most security relevant reason is that your current key could be com-

promised. This is the case if, for example, your device was infected with
malware, or it was lost or stolen. In such cases, it is essential to immedi-
ately inform your communication partners that any messages encrypted to
your key—not only new messages, but also messages encrypted prior to

6.1. KEYS AREN’T FOREVER, REVOCATION CERTIFICATES ARE 55

the compromise—could be read by a third party, and that signatures made
by your key should no longer be trusted.

A less acute, but still important security relevant reason for creating a
new key is that your old key no longer satisfies your security requirements.
This could either be because your security requirements have changed, or
the key has become weaker due to advances in cryptanalysis (the science of
breaking cryptographic systems). An example of the latter is that 1024-bit
RSA keys are no longer considered sufficiently strong to stop nation-state
attackers. In reaction to this development, organizations like Debian now
require members who have such keys to generate new ones. Although
the immediate security implications are not as grave as above (unless you
really think you are being targeted by a nation-state adversary), communi-
cation partners still need to be told to start using the new key.

A practical reason for creating a new key is that your old one has be-
come inaccessible. This can happen if you forget your password, or you
forget to migrate your key when reinstalling your system. Novice users
are often beset by these problems. This usually leads to mails that can’t
be decrypted, because someone used the old key, which still appears to be
valid. This not only inconveniences the recipient, because she can’t decrypt
the email, but also the sender, because the recipient will have to ask him to
resend the email using her new key. This mistake appears to the users as a
usability problem. But, it is worse; it is a security problem: users learn that
encrypting email is fragile. And, taking this lesson to heart, they will re-
serve encryption for messages that "really" need protection. But, when the
time comes, these users will be out of practice, which increases the chance
that they mistakenly leave some important data unencrypted.

There is only one way to deal with these issues: the user needs to some-
how inform her communication partners that her old key is no longer valid,
and that a new one should be used instead. This can be done by talking to
each person. But, this is inconvenient for everyone involved. Instead, it is
easier, and less error prone to simply codify this into the system, which is
what a revocation certificate does: it states that a particular key is no longer
valid. And, a user’s communication partners don’t normally have to take
any special actions: once uploaded to a key server, it will automatically be
respected the next time the software refreshes the key.

A revocation certificate is only considered valid if it includes a self-
signature. This presents a problem for users who lost access to their
key: they can’t create a revocation certificate! To mitigate this prob-

56 CHAPTER 6. KEY CREATION

lem, version 2.1 of GnuPG automatically creates a revocation certificate
when creating a new key. (The revocation certificate is stored in the
$GNUPGHOME/openpgp-revocs.d directory.)

Because gpg doesn’t know how the certificate will be used, it creates a
generic revocation certificate. In some cases, it is useful to provide more
details. But, in practice, this is rarely necessary: most users won’t see the
reason, and GnuPG treats the different reasons in the same way. Other
OpenPGP implementations appear to do the same thing.

Automatically creating the revocation certificate when the key is cre-
ated ensures that users who forget their password can still revoke their
key. But, this doesn’t help users who accidentally delete their key, e.g., by
reinstalling their system, or forgetting to migrate it to a new computer. To
protect against this mistake, it is essential that the revocation certificate be
backed up on a separate system.

6.1.1 Backing Up a Revocation Certificate

To help ensure that the revocation certificate remains accessible when it is
finally needed, it should be stored in multiple places, but not someplace
that is easily accessible to an adversary. This is hard to do automatically.

One easy way to make a backup is to store the revocation certificate on
the user’s mail server. Of course, anyone with access to the mail account,
such as the mail provider, could publish it. But, this is unlikely to happen
in practice, and the consequences are more an inconvenience than a secu-
rity issue: the user has to create a new key, and should tell her contacts
what happened; the attacker is not able to forge signatures, or decrypt any
messages.

Another way to make a backup is to display the revocation certificate as
a QR code, and have the user photograph it. On Debian, this can be done
using qrencode:

$ apt-get install qrencode
$ qrencode -o $FINGERPRINT.png < $FINGERPRINT.rev
$ eog $FINGERPRINT.png

Even if the user doesn’t have a QR code scanner installed on her camera,
it is possible to decode it later. This can be done, for instance, using ZBar,
which is available on Debian as part of the zbar-tools package. Because
the user probably won’t know what the QR code is for after a few weeks,

6.1. KEYS AREN’T FOREVER, REVOCATION CERTIFICATES ARE 57

it is essential to add text next to the QR code to explain that the QR code
contains a revocation certificate. The main security problem here is that
many phones automatically backup data to the cloud, and, as above, the
provider needs to be trusted to not publish it.

It is also reasonable to print the revocation certificate. Paper, for in-
stance, has much better archival properties than many digital storage medi-
ums, such as CD-ROMs. This can either be in text form (but this form is a
pain to reenter) or as a QR code. Unfortunately, printers are no longer as
secure as they once were: to simplify printing, some local printers are ac-
cessed via the cloud! But, even if this is not the case, in the very least, most
are connected to the internet, and don’t receive software updates. But, as
before, the damage that an attacker who has a revocation certificate can
cause is limited.

6.1.2 Publishing a Revocation Certificate

A key isn’t really revoked until all communication partners have a copy
of the revocation certificate. The easiest way to accomplish this is to im-
port the revocation certificate locally, and then publish it on the public key
servers.

$ gpg --import 98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2.rev
gpg: key EACAE136B8AF8CC2: "Juliet Capulet <juliet@riseup.net>" revocation certificate imported
gpg: Total number processed: 1
gpg: new key revocations: 1
$ gpg --send-key 98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2
gpg: sending key EACAE136B8AF8CC2 to hkps://hkps.pool.sks-keyservers.net

When using the revocation certificate that gpg automatically generated
at key creation time, one more step is required: to prevent the user from
accidentally importing the revocation certificate, GnuPG requires that the
user first edit the file to remove a comment character. The contents of the
file explain this, but importing the file does not provide a helpful error
message (gpg just indicates that the file contains "no valid OpenPGP data"),
and most users won’t know to look at the files, which explains what to do:

...
To avoid an accidental use of this file, a colon has been inserted
before the 5 dashes below. Remove this colon with a text editor

58 CHAPTER 6. KEY CREATION

before importing and publishing this revocation certificate.

:-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: This is a revocation certificate

iQE2BCABCAAgFiEEmNuExW9W21z0czzN6srhNrivjMIFAlmNo+4CHQAACgkQ6srh
...

Assuming the user’s communication partners have configured their
software to automatically refresh keys, this should be enough. But it is
nevertheless recommended that the updated key be sent to frequent com-
munication partners to ensure a timely notification. This is best done by
attaching a minimal key, which can be generated as follows:

$ gpg -a --export --export-options export-minimal \
> 98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2 > juliet-key.gpg

6.1.3 Recruiting Your Friends

Another way to deal with the revocation problem is to make a trusted
third party a so-called designated revoker. This can be done by using the
addrevoker subcommand in the --edit-key interface. For instance,
Romeo could designate Juliet as a revoker for his key:

$ gpg --edit-key romeo@gnupg.net
Secret key is available.

sec rsa2048/B003B1463C7B41BE
created: 2017-08-11 expires: 2019-08-11 usage: SC
trust: ultimate validity: ultimate

ssb rsa2048/50A1A6C84DBDEA6F
created: 2017-08-11 expires: never usage: E

[ultimate] (1). Romeo Montague <romeo@gnupg.net>

gpg> addrevoker

Enter the user ID of the designated revoker: 98DB84C56F56DB5CF4733CCDEACAE136B8AF8CC2
pub rsa2048/EACAE136B8AF8CC2 2017-08-11 Juliet Capulet <juliet@riseup.net>
Primary key fingerprint: 98DB 84C5 6F56 DB5C F473 3CCD EACA E136 B8AF 8CC2

6.2. TWEAKING, TWIDDLING, AND FROBBING 59

WARNING: appointing a key as a designated revoker cannot be undone!

Are you sure you want to appoint this key as a designated revoker? (y/N) y

This key may be revoked by RSA key EACAE136B8AF8CC2 Juliet Capulet <juliet@riseup.net>
sec rsa2048/B003B1463C7B41BE

created: 2017-08-11 expires: 2019-08-11 usage: SC
trust: full validity: full

ssb rsa2048/50A1A6C84DBDEA6F
created: 2017-08-11 expires: never usage: E

[full] (1). Romeo Montague <romeo@gnupg.net>

gpg> quit
Save changes? (y/N) y

Now, Juliet can generate a revocation certificate for Romeo’s key using
gpg ’s --generate-designated-revocation command. The result-
ing revocation certificate is just like a normal revocation certificate. So, as
above, Juliet would import this certificate, and then publish Romeo’s key
to cause it to be revoked.

6.2 Tweaking, Twiddling, and Frobbing

Prior to GnuPG 2.1, the --quick-gen-key command did not exist. To
generate a key, users instead had to use the --gen-key command. The
--gen-key command is like --quick-gen-key, but prompts the user to
set a number of parameters. (This command, as well as its even more flex-
ible variant, --full-key-gen, are still available.) But, in practice, few
users need to use anything but the defaults. In fact, the defaults are even
reasonable for almost all experts. Unfortunately, because the --gen-key
command asks for user input, users appear to assume that the defaults
need to be tweaked. And, this idea that the defaults are not sufficient is
further reinforced by most GnuPG guides that suggest "better," more "se-
cure" settings. In almost all cases, these guides only confuse, overwhelm,
and scare users.

Now, it is almost certainly true that a larger key is harder to brute force
than a smaller key. That is, a larger key increases the strength of the cryp-

60 CHAPTER 6. KEY CREATION

tography. But, larger key sizes have a cost. In particular, verifying a sig-
nature generated by a 4096-bit RSA key doesn’t take twice as long as a
2048-bit RSA key, but orders of magnitude longer. So, the question is: does
the stronger cryptography actually increase the system’s security? Bruce
Schneier argues that the Snowden leaks provide strong evidence that the
NSA has not broken strong cryptography: when the NSA wants to access
someone’s data, they compromise the infrastructure and the endpoints,
which is more costly, and more likely to be noticed [21]. Assuming Schneier
is correct, since the strongest potential adversary in the world isn’t break-
ing strong cryptography, further increasing the strength of the cryptogra-
phy will not increase the system’s security. Instead, to increase the system’s
security, it is better to protect the endpoint, and improve the user’s opera-
tional security.

There are several things that can be done to better protect an endpoint.
These include encrypting the storage device, using a good password for
logging in, enabling a screen locker, promptly installing system updates,
and avoiding malware. The next step is to better protect the cryptographic
keys. This can be done by using a security token, which is a small piece of
hardware that stores the cryptographic keys, and performs the basic cryp-
tographic operations. In this way, if the end point is compromised, the keys
are still safe. Although any data that was decrypted while the adversary
controlled the computer could have been recovered.

For those few cases where it is necessary to override some defaults, it is
still possible to use the --key-gen command or --full-key-gen com-
mand. And, it is also possible to modify a key using gpg ’s --edit-key
interface.

gpg also provides an interface for batch operations. See the "Unat-
tended key generation" chapter of the GnuPG manual for details.

6.3 Security Tokens

A security token is a small piece of hardware that is typically connected to
a computer via USB or NFC. The security token holds the keys and per-
forms the primitive crypto operations, such as, decrypting a session key, or
generating a signature. In this way, the secret key material never needs to
be on the internet-connected device.

Not having the secret key material on the main device has a number

6.3. SECURITY TOKENS 61

of advantages: if an adversary wants to decrypt or sign messages, it is not
sufficient to compromise the endpoint and exfiltrate the keys; the attacker
needs to maintain a presence on the device, and wait for the user to insert
the security token to decrypt or sign a message. For smartcard readers with
an integrated PIN pad, the attacker also has to convince the user to enter
the security token’s PIN. This is a great defense, because although a user
might enter the PIN a few times, most people will quickly become suspi-
cious of many spurious prompts. Unfortunately, readers with an integrated
PIN pad are bulky, which makes them inconvenient for mobile users. But,
even without a PIN pad, security tokens significantly increase security. Of
course, a security token can’t prevent an attacker who has control over the
endpoint from seeing any messages that are decrypted on the device.

A security token also has the advantage that if the device is compro-
mised, it is not necessary to completely revoke the OpenPGP key. At most
the signing subkey needs to be rotated (see Section 6.5), if the attacker
might have signed a message. This is a great advantage, because the user’s
fingerprint stays the same, and certifications remain valid. Normally, cre-
ating a new OpenPGP key means that the user not only has to inform all
of her contacts that she has a new key, and print new business cards, but
she also has to recertify all of the keys that she signed, and convince people
who signed her old key to sign her new one.

Given their security properties, and the relative ease of use once they
are setup, we strongly recommend that anyone who relies on GnuPG to
protect their security use a security token. Using an online key is reasonable
for people who use GnuPG to protect their privacy or protect themselves
from phishing excursions, or who want to hinder mass surveillance.

6.3.1 Hardware

There are a variety of security tokens that support OpenPGP. These have
different advantages and disadvantages in terms of the degree to which
they respect the user’s freedom, their security properties, their feature
sets, and their commercial availability. Below, we introduce a few that are
known to work well with GnuPG.

62 CHAPTER 6. KEY CREATION

OpenPGP Smartcard

The OpenPGP smartcard has been around since 2003. Although the soft-
ware is proprietary, the specification is freely available and usable without
constraints [22], and it has become the de facto interface for interacting with
OpenPGP security tokens.

The main distributor is Kernel Concepts. They sell them to end
users in their online shop, and they ship worldwide (https://www.
floss-shop.de/en). These smartcards are relatively inexpensive. At
the time of this writing, the FLOSS Shop sells them for 16.40 euros. But,
because most systems don’t include a smartcard reader, this hardware also
needs to be purchased. Depending on the required features, in particular,
whether an external PIN entry pad is desired, a smartcard reader currently
costs between 20 euros and 50 euros.

Gnuk

The Gnuk security token (https://www.fsij.org/category/gnuk.
html) was created by NIIBE Yutaka in 2012. His goal is to create a secu-
rity token that not only uses free software, but whose schematics are freely
available, and whose parts can be sourced by anyone. These constraints
mean that the Gnuk does not use specialized security hardware that has
been strengthened to prevent physical key extraction attacks, because this
hardware’s documentation is typically only available by signing an NDA,
and can not be easily bought by individuals. But, although commodity
hardware can’t protect the user from key extraction attacks half as well as
specially hardened hardware, it is much more difficult for an attacker to
introduce a backdoor on all versions of the product. For instance, the MCU
that Gnuk uses is produced by many manufacturers.

Using an alternate official firmware, the Gnuk can also function as a
true random number generator (TRNG).

Nitrokey

The Nitrokey (https://www.nitrokey.com/) is based on the Gnuk, but
is more feature rich. For instance, it supports OTP and U2F. And, some ver-
sions have on-board storage. The code is open source, but the schematics
are not freely available.

https://www.floss-shop.de/en
https://www.floss-shop.de/en
https://www.fsij.org/category/gnuk.html
https://www.fsij.org/category/gnuk.html
https://www.nitrokey.com/

6.3. SECURITY TOKENS 63

YubiKey

YubiKey (https://yubikey.com) is a popular security token that has
been adopted by some large organizations including Google and GitHub,
and is sold by many major retailers. Like the Nitrokey, YubiKeys sup-
port several different security systems. But, not all YubiKeys support the
OpenPGP card interface: support for this functionality is in the current
product line is limited to the YubiKey NEO, and the YubiKey 4. The Yu-
biKey NEO also supports NFC. This wireless interface makes it easy to
use the YubiKey with a mobile phone. And, OpenKeychain, which is an
OpenPGP implementation that integrates with the K-9 mailer on Android,
supports it.

Like the OpenPGP smartcard, the YubiKey’s firmware is proprietary.
YubiKey used to release their OpenPGP applet as open source, but decided
that due to their focus on security, and the inability to reflash the devices,
making the source code available provides "little practical value" [23].

6.3.2 Creating a Key

Most security tokens include functionality to create an OpenPGP key. But,
using this functionality is dangerous. First, given the limited hardware,
and the typically proprietary software, the quality of the entropy is ques-
tionable. Unfortunately, the importance of high quality entropy for the se-
curity of the system can not be understated. For instance, the NSA is known
to have backdoored the Dual_EC_DRBG pseudorandom number genera-
tor, a standard adopted by NIST, to allow them to recover encryption keys,
and paid companies like RSA to make it the default in their products [24].
Second, security tokens do not provide an option to export keys. This limi-
tation is highly desirable to prevent an attacker from recovering keys if the
device is stolen or lost. But, it also means that it is not possible to backup
the keys. Since OpenPGP is used to protect long-lived data, this is a serious
limitation.

The alternative to creating an OpenPGP key on the security token is
to create it on a computer, and then copy it to the security token. GnuPG
supports this out of the box. But, with some distributions, such as Debian,
GnuPG’s smartcard support is packaged separately and not installed by
default. On Debian and Ubuntu, GnuPG’s smartcard support is included
in the scdaemon package. Depending on the security token, it may also be

https://yubikey.com

64 CHAPTER 6. KEY CREATION

necessary to install pcscd, which includes additional drivers.

Using An Offline Computer

If you are going to take the trouble to use a smartcard to separate your
secret keys and your main system, then you can’t use your main system to
manage your keys.

There are two ways around this: you can either use a dedicated offline
computer, or a live CD. The former is more secure, particularly, if you are
willing to completely cut off its network access (i.e., air gap it by removing
all network cards, bluetooth module, etc.). Given that used IBM Thinkpads
are readily available for under 50 euros, this is the preferred solution. That
said, for the majority of people who have modest security requirements,
managing keys from a live CD that is booted from their main computer is
reasonable.

Unfortunately, most live CDs are not appropriate for working with of-
fline keys. Tails, however, is a GNU/Linux distribution that takes the nec-
essary precautions. First, Tails starts as few services as possible to reduce
the attack surface, and, with one clearly marked exception, it doesn’t allow
outbound network access except over Tor. And, when Tails shuts down, it
wipes the system’s memory. This is essential to make sure the keys are not
accidentally exposed to an attacker. This protection is not just necessary to
prevent cold boot attacks [25], which only those who require the highest
levels of security have to worry about, but also to prevent the system af-
ter it restarts from accessing, and perhaps accidentally leaking the keys in
uninitialized memory.

Whether you use a dedicated computer or reboot your normal com-
puter into Tails, you need:

• A security token,

• The Tails distribution,

• A bootable storage device for Tails (at least 2 GB large),

• A storage device for your secret key material, and

• A storage device for exchanging files with your main system.

It doesn’t matter whether the storage devices are USB keys, SD cards,
hard drives, or something else. The important bit is that your computer can

6.3. SECURITY TOKENS 65

boot from the one for Tails, and the security token, and the storage devices
can all be attached to the computer at the same time.

6.3.3 Tails

Tails is available from https://tails.boum.org/. The key used to sign
the distribution is:

A490 D0F4 D311 A415 3E2B B7CA DBB8 02B2 58AC D84F

First, download the ISO image, and the corresponding signature file.
The latest version is linked to from https://tails.boum.org/install/
download/openpgp/, and the files are named like tails-amd64-VERSION.iso
and tails-amd64-VERSION.iso.sig.

Next, verify the signature. To do this, you need to first fetch the afore-
mentioned key:

$ gpg --recv-key A490D0F4D311A4153E2BB7CADBB802B258ACD84F
gpg: requesting key 58ACD84F from hkp server keys.gnupg.net
gpg: key 58ACD84F: public key "Tails developers (offline long-term identity key) <tails@boum.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
$ gpg --verify tails-amd64-VERSION.iso.sig tails-amd64-VERSION.iso
gpg: Signature made Wed 09 Aug 2017 02:06:36 AM CEST
gpg: using RSA key 79192EE220449071F589AC00AF292B44A0EDAA41

--
gpg: Good signature from "Tails developers (offline long-term identity key) <tails@boum.org>" [undefined]
gpg: aka "Tails developers <tails@boum.org>" [undefined]

The --verify command shows us that the signature is "good" in the
sense that the signature was really over the ISO image. But, it also shows us
that the signature was generated by the key 79192EE220449071F589AC00AF292B44A0EDAA41,
not by the key A490D0F4D311A4153E2BB7CADBB802B258ACD84F! A
close examination reveals that this is because the Tails developers used
a signing subkey to make the signature. We can see this by using the
--list-keys command to show more details about the key used to create
the signature:

https://tails.boum.org/
https://tails.boum.org/install/download/openpgp/
https://tails.boum.org/install/download/openpgp/

66 CHAPTER 6. KEY CREATION

$ gpg -k 79192EE220449071F589AC00AF292B44A0EDAA41
pub rsa4096/0xDBB802B258ACD84F 2015-01-18 [C] [expires: 2018-01-11]

Key fingerprint = A490 D0F4 D311 A415 3E2B B7CA DBB8 02B2 58AC D84F
--

uid [undef] Tails developers (offline long-term identity key) <tails@boum.org>
uid [undef] Tails developers <tails@boum.org>
sub rsa4096/0x98FEC6BC752A3DB6 2015-01-18 [S] [expires: 2018-01-11]
sub rsa4096/0x3C83DCB52F699C56 2015-01-18 [S] [expires: 2018-01-11]
sub rsa4096/0xAF292B44A0EDAA41 2016-08-30 [S] [expires: 2018-01-11]

Note: when you try this, you might see a different signing key. This
is okay. What is important is that the main key is correct in the sense that
the fingerprint matches: the user ID is not enough to prove the download’s
authenticity; creating a key with an arbitrary user ID, and uploading it to
a key server is easy. By rotating keys, the Tails developers can reduce the
amount of time that an undetected compromise of the signing key is useful
to an attacker.

If gpg --verify indicates that the signature is bad, or gpg -k indi-
cates that the signing key is not associated with A490D0F4D311A4153E2BB7CADBB802B258ACD84F,
then there is a problem with the download. You should first try again from
a different network. If the problem persists, seek help from an expert. Since
Tails is used by people who are trying to protect sensitive information,
there are bound to be copies that have been modified to include malware;
do not use the ISO image if you (or someone you trust) can’t verify it.

Assuming the data is okay, it is now possible to copy the Tails ISO to a
USB key. This can be done using dd:

$ sudo dd if=tails-amd64-VERSION.iso of=/dev/sdX bs=4096

(sdX should be replaced by the name of the actual storage device.)
Then, boot into Tails.
Before logging it, you can set the root password so that you can, for

instance, install additional (optional) software. You can do this at the Tails
login screen by going to Additional Settings » Administration Password. Note:
if you are worried about a targeted attack, you should not connect the com-
puter to the network, and this step can be skipped.

The Tails website has alternate installation and verification instructions.
It is reasonable to follow them. Particularly, if you don’t have a Unix-

6.3. SECURITY TOKENS 67

like system with gpg already installed, which these instructions take for
granted.

6.3.4 Initializing the Security Token

Once Tails has started, the first thing to do is to make sure that it recog-
nizes the security token. Insert the security token, and then issue gpg ’s
--card-status command. The output should be similar to the follow-
ing:

$ gpg --card-status
Reader: 04E6:E003:21251019201732:0
Application ID ...: D276000124010201000500002D9D0000
Version: 2.1
Manufacturer: ZeitControl
Serial number: 00002D9D
Name of cardholder: [not set]
Language prefs ...: de
Sex: unspecified
URL of public key : [not set]
Login data: [not set]
Signature PIN: forced
Key attributes ...: rsa2048 rsa2048 rsa2048
Max. PIN lengths .: 32 32 32
PIN retry counter : 3 0 3
Signature counter : 0
Signature key: [none]
Encryption key....: [none]
Authentication key: [none]
General key info..: [none]

Looking at the Manufacturer field, we see that the security token is
an OpenPGP smartcard. Specifically, we know from the Version field
that it implements version 2.1 of the OpenPGP card specification. Like all
OpenPGP smartcards, it supports three keys: a signing key, an encryption
key, and an authentication key. The Signature key, Encryption key
and Authentication key fields tell us that no keys are currently stored
on the card. The Key attributes field indicates that this particular

68 CHAPTER 6. KEY CREATION

OpenPGP card supports up to 2048-bit RSA keys. Newer versions of the
card support 4096-bit RSA keys.

If the card has already been used, then it first needs to be reset. This
can be done using --card-edit ’s factory-reset subcommand. If the
factory reset command indicates that the card is not supported, as below,
you may need to consult your security token’s documentation:

$ gpg --card-edit
...
gpg/card> admin
Admin commands are allowed

gpg/card> factory-reset
gpg: OpenPGP card no. D276000124010200FFFE50FF6C060000 detected
gpg: This command is not supported by this card

But, the following commands usually work:

$ gpg-connect-agent
/hex
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 81 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
scd apdu 00 20 00 83 08 40 40 40 40 40 40 40 40
scd apdu 00 e6 00 00
scd apdu 00 44 00 00

The first four lines after the /hex directive enter a bad user PIN.
The next four enter a bad admin PIN. Then, the last two lines terminate,
and reactivate the card, respectively. After removing the security token
and reconnecting it, it should be reset. You can verify this by running
gpg --card-edit, checking that the card contains no keys, and then us-
ing the verify subcommand to make sure the user PIN has been reset to
the default (normally 123456).

6.3. SECURITY TOKENS 69

Next, we need to change the default PINs. The OpenPGP card has two
PINs: a user PIN and an admin PIN. The user PIN is used on a day-to-day
basis to authorize decryption and signing; the admin PIN allows adding
new keys, among other things. The admin PIN should not be used on the
main computer, and it should be different from the user PIN. The default
PINs are usually 123456 and 12345678, respectively.

To change the PINs, we need to first enable admin mode. Then, we can
use the passwd command to change each PIN. GnuPG will prompt you to
enter the old PIN and the new PIN. If you are using a PIN pad, this can be
confusing: you need to enter the new PIN twice.

$ gpg --card-edit
...
gpg/card> admin
Admin commands are allowed

gpg/card> passwd
gpg: OpenPGP card no. D276000124010201000500002D9D0000 detected

1 - change PIN
2 - unblock PIN
3 - change Admin PIN
4 - set the Reset Code
Q - quit

Your selection? 1
PIN changed.

1 - change PIN
2 - unblock PIN
3 - change Admin PIN
4 - set the Reset Code
Q - quit

Your selection? 3
PIN changed.

1 - change PIN

70 CHAPTER 6. KEY CREATION

2 - unblock PIN
3 - change Admin PIN
4 - set the Reset Code
Q - quit

Your selection? q

You’ll almost certainly want to write the admin PIN down someplace.
Given how often it is normally used, most people forget it. A good place
to hide it is at a physically different location from where you hide the USB
key with your secret keys on it.

6.3.5 Formatting the Removable Storage Devices

As mentioned above, we need to format two storage devices: one for the
secret keys, and one for the public keys. Assuming the partition holding the
private key material is encrypted with a strong passphrase, it is reasonable
to just have two partitions on a single memory card. But, if possible, it
is better to never insert the USB key with the secret key material into an
insecure computer.

The Encrypted File System

When we create the OpenPGP key, we need to store it somewhere. Al-
though it is possible to install Tails and create a persistent volume, it is
better to use a separate storage device. This way, upgrading your Tails "in-
stallation" is trivial: you just need to download a new live CD, and copy it
to your dedicated Tails device; there is no data to migrate.

The amount of storage space for secret keys material doesn’t need to
be large: 10 megabytes is more than sufficient. But, it should be encrypted.
The easiest way to create an encrypted file system in Tails is to use GNOME
Disks (Applications » Utilities » Disks).

In GNOME Disks, select the USB key, create a new volume, set the label
to "secret-keys", and format it as a "LUKS + Ext4" file system. See Figure 6.1.
GNOME Disks does not automatically mount the new file system. But, you
can do this by selecting the partition, and clicking on the "play" button. The
file system will be mounted under /media/amnesia/secret-keys.

You’ll probably also want to write this passphrase on the piece of paper
with your admin PIN.

6.3. SECURITY TOKENS 71

Figure 6.1: Formatting an encrypted partition in GNOME Disks.

The Sneaker Net File System

Unfortunately, most security tokens don’t store the public key or have any
storage space on them. Thus, to transfer the public key to the main com-
puter, we need a third storage device.

This time, when partitioning the file system, name the file system
sneaker-net, and use an unencrypted ext4 file system. After it has been
formatted, mount the partition. The file system will be mounted under
/media/amnesia/sneaker-net.

6.3.6 Generating the Keys

We can finally generate the keys. At the beginning of this chapter, we gen-
erated a simple key that had a single subkey. When using a security token,
we also want at least a signing subkey. If you plan to use your security
token to authenticate ssh connections, then you’ll also need an authenti-
cation subkey. The reason to have a signing subkey is to further isolate the
powerful certification-capable key from your online devices: the certifica-
tion key not only determines your key’s identity, but it is also used to create
new subkeys. Thus, using the master key not only as a certification key, but
also a signing key would mean that if the security token is lost, then we’d
have to create a new OpenPGP key. If this happens when using a separate

72 CHAPTER 6. KEY CREATION

signing subkey, it is only necessary to revoke the signing subkey, and create
a new one.

The following transcript shows how to create a certification-capable
master key, and three subkeys. Note that we first change gpg ’s home di-
rectory to be on the encrypted file system.

$ mkdir -p /media/amnesia/secret-keys/gnupg
$ export GNUPGHOME=/media/amnesia/secret-keys/gnupg
$ gpg --quick-gen-key ’Juliet Capulet <juliet@gnupg.net>’ rsa cert 2y
gpg: WARNING: unsafe permissions on homedir ’/media/amnesia/secret-keys/gnupg’
gpg: keybox ’/media/amnesia/secret-keys/gnupg/pubring.kbx’ created
gpg: /media/amnesia/secret-keys/gnupg/trustdb.gpg: trustdb created
gpg: key E9794A89BDB70380 marked as ultimately trusted
gpg: directory ’/media/amnesia/secret-keys/gnupg/openpgp-revocs.d’ created
gpg: revocation certificate stored as ’/media/amnesia/secret-keys/gnupg/openpgp-revocs.d/635D6A0EA043F835A1FFD9A7E9794A89BDB70380.rev’
public and secret key created and signed.

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a subkey for this purpose.
pub rsa2048 2017-08-14 [C] [expires: 2019-08-14]

635D6A0EA043F835A1FFD9A7E9794A89BDB70380
uid Juliet Capulet <juliet@gnupg.net>

$ gpg --quick-addkey 635D6A0EA043F835A1FFD9A7E9794A89BDB70380 rsa encr 1y
$ gpg --quick-addkey 635D6A0EA043F835A1FFD9A7E9794A89BDB70380 rsa sign 1y
$ gpg --quick-addkey 635D6A0EA043F835A1FFD9A7E9794A89BDB70380 rsa auth 1y

Listing the key, we can see that we got the desired structure:

$ gpg -K
gpg: WARNING: unsafe permissions on homedir ’/media/amnesia/secret-keys/gnupg’
gpg: checking the trustdb
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2019-08-14
/media/amnesia/secret-keys/gnupg/pubring.kbx
--
sec rsa2048 2017-08-14 [C] [expires: 2019-08-14]

635D6A0EA043F835A1FFD9A7E9794A89BDB70380

6.3. SECURITY TOKENS 73

uid [ultimate] Juliet Capulet <juliet@gnupg.net>
ssb rsa2048 2017-08-14 [E] [expires: 2018-08-14]
ssb rsa2048 2017-08-14 [S] [expires: 2018-08-14]
ssb rsa2048 2017-08-14 [A] [expires: 2018-08-14]

Because the OpenPGP card doesn’t include the public key, it is neces-
sary to use the sneaker net storage device to transfer the public key from
the offline machine to the online machine:

$ gpg -a --export 635D6A0EA043F835A1FFD9A7E9794A89BDB70380 > \
> /media/amnesia/sneaker-net/635D6A0EA043F835A1FFD9A7E9794A89BDB70380.pub

If your Tails machine is connected to the Internet, you could transfer the
public key by uploading it to a key server or a website, and then retrieving
it with the online machine.

6.3.7 Saving Your Progress

Just in case, we make a mistake, it is useful to create a snapshot of the secret
key material:

$ gpg --export-secret-keys > /media/amnesia/secret-keys/secret-keys.gpg

To restore, we can import the key and mark it as ultimately trusted:

$ rm -rf /media/amnesia/secret-keys/gnupg
$ mkdir /media/amnesia/secret-keys/gnupg
$ gpg --import secret-keys.gpg
gpg: WARNING: unsafe permissions on homedir ’/media/amnesia/secret-keys/gnupg’
gpg: keybox ’/media/amnesia/secret-keys/gnupg/pubring.kbx’ created
gpg: /media/amnesia/secret-keys/gnupg/trustdb.gpg: trustdb created
gpg: key E9794A89BDB70380: public key "Juliet Capulet <juliet@gnupg.net>" imported
gpg: key E9794A89BDB70380: secret key imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: secret keys read: 1
gpg: secret keys imported: 1
$ gpg --edit-key juliet@gnupg.net
...

74 CHAPTER 6. KEY CREATION

Please decide how far you trust this user to correctly verify other users’ keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I don’t know or won’t say
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately
m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

6.3.8 Creating a Backup

The Revocation Certificate

It is almost certainly reasonable to store the revocation certificate on the
main computer. Thus, we can copy it to our sneaker net device:

$ cp /media/amnesia/secret-keys/gnupg/openpgp-revocs.d/635D6A0EA043F835A1FFD9A7E9794A89BDB70380.rev \
> /media/amnesia/sneaker-net

Just remember to actually copy it to someplace that is regularly backed
up.

The Secret Key

Backing up the secret key is more difficult, because its security require-
ments are much higher given the consequences of a compromise. Paperkey
is a relatively convenient way to back up secret key material on paper. To
do this, you have to to attach and configure a printer. Make sure the printer
is not connected to the network, and reset the printer afterwards.

$ paperkey --secret-key /media/amnesia/secret-keys/secret-keys.gpg
Secret portions of key 635D6A0EA043F835A1FFD9A7E9794A89BDB70380
Base16 data extracted Mon Aug 14 13:36:43 2017
Created with paperkey 1.3 by David Shaw
#
File format:

6.3. SECURITY TOKENS 75

a) 1 octet: Version of the paperkey format (currently 0).
b) 1 octet: OpenPGP key or subkey version (currently 4)
c) n octets: Key fingerprint (20 octets for a version 4 key or subkey)
d) 2 octets: 16-bit big endian length of the following secret data
e) n octets: Secret data: a partial OpenPGP secret key or subkey packet as
specified in RFC 4880, starting with the string-to-key usage
octet and continuing until the end of the packet.
Repeat fields b through e as needed to cover all subkeys.
#
To recover a secret key without using the paperkey program, use the
key fingerprint to match an existing public key packet with the
corresponding secret data from the paper key. Next, append this secret
data to the public key packet. Finally, switch the public key packet tag
from 6 to 5 (14 to 7 for subkeys). This will recreate the original secret
key or secret subkey packet. Repeat as needed for all public key or subkey
packets in the public key. All other packets (user IDs, signatures, etc.)
may simply be copied from the public key.
#
Each base16 line ends with a CRC-24 of that line.
The entire block of data ends with a CRC-24 of the entire block of data.

1: 00 04 63 5D 6A 0E A0 43 F8 35 A1 FF D9 A7 E9 79 4A 89 BD B7 03 80 1D7942
2: 02 B9 FE 07 03 02 E7 84 42 CB 86 E4 73 CA DB 47 A2 C0 4F 0A BB 57 2C46C8
3: 04 63 BF E6 11 52 C4 F3 7A BB 12 34 66 DB 79 5A 89 E1 C2 8D 2E 10 603062
4: 0B 3D 57 0A FD ED 8A 97 71 0B 51 EB 31 C4 02 28 C1 6E 64 18 B9 2C 8470F7

...
132: C5CD3A

Note: when you restore the key, you’ll still need the key’s passphrase.
Another way to backup the secret key is to copy it to another encrypted

storage device.

6.3.9 Copying the Keys to the Security Token

We can finally copy the keys to the security token. This is done using gpg
’s --card-edit interface. To add keys to the card, you’ll need to enter the
admin PIN, not the user PIN.

The subcommand to move a key to a security token is keytocard.
keytocard works on the currently active subkey. The key subcommand

76 CHAPTER 6. KEY CREATION

is used to select or deselect a key. Since some operations can operate on
multiple keys, it is necessary to explicitly deselect keys. Selected keys are
shown with a *.

$ gpg --edit-key 635D6A0EA043F835A1FFD9A7E9794A89BDB70380
Secret key is available.

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb rsa2048/F8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E

ssb rsa2048/305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S

ssb rsa2048/300BA8EE1B5EDEED
created: 2017-08-14 expires: 2018-08-14 usage: A

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> key 1 # Select the first subkey.

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb* rsa2048/F8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E

ssb rsa2048/305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S

ssb rsa2048/300BA8EE1B5EDEED
created: 2017-08-14 expires: 2018-08-14 usage: A

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> keytocard
Please select where to store the key:

(2) Encryption key
Your selection? 2
...
gpg> key 2 # Select the second subkey.

6.3. SECURITY TOKENS 77

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb* rsa2048/F8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E

ssb* rsa2048/305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S

ssb rsa2048/300BA8EE1B5EDEED
created: 2017-08-14 expires: 2018-08-14 usage: A

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> key 1 # Deselect the first subkey.

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb rsa2048/F8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E

ssb* rsa2048/305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S

ssb rsa2048/300BA8EE1B5EDEED
created: 2017-08-14 expires: 2018-08-14 usage: A

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> keytocard
Please select where to store the key:

(1) Signature key
(3) Authentication key

Your selection? 1
...
gpg> key 3 # Select the third subkey.
...
gpg> key 2 # Deselect the second subkey.
...
gpg> keytocard
Please select where to store the key:

(3) Authentication key
Your selection? 3

78 CHAPTER 6. KEY CREATION

...
gpg> quit
Save changes? (y/N) n
Quit without saving? (y/N) y

At the end of the transcript, we explicitly do not save the changes. Sav-
ing the changes would cause the secret key material for the corresponding
subkey to be deleted. The reason for this is that the keytocard command
doesn’t copy, but moves the secret key material to the card. Saving with-
out quitting inhibits this side effect. In practice, this isn’t a problem if you
backed up the secret key material, as recommended above.

Using --card-status, we can see that the keys were successfully
loaded on to the security token:

$ gpg --card-status
Reader: SCM Microsystems Inc. SPR 532 [Vendor Interface] (21251019201732) 00 00
Application ID ...: D276000124010201000500002D9D0000
Version: 2.1
Manufacturer: ZeitControl
Serial number: 00002D9D
Name of cardholder: [not set]
Language prefs ...: de
Sex: unspecified
URL of public key : [not set]
Login data: [not set]
Signature PIN: forced
Key attributes ...: rsa2048 rsa2048 rsa2048
Max. PIN lengths .: 32 32 32
PIN retry counter : 3 0 3
Signature counter : 0
Signature key: A17A D462 C473 51AD D0E8 988B 305A 8468 03A9 1753

created: 2017-08-14 13:07:49
Encryption key....: C9CD 8F3D ECDE BB7E 720A 7CD9 F8D8 ED7B B1A2 A8F6

created: 2017-08-14 13:07:32
Authentication key: 9308 3590 BCD9 3CC5 044C BEAD 300B A8EE 1B5E DEED

created: 2017-08-14 13:08:04
General key info..: sub rsa2048/305A846803A91753 2017-08-14 Juliet Capulet <juliet@gnupg.net>
sec rsa2048/E9794A89BDB70380 created: 2017-08-14 expires: 2019-08-14

6.3. SECURITY TOKENS 79

ssb rsa2048/F8D8ED7BB1A2A8F6 created: 2017-08-14 expires: 2018-08-14
ssb rsa2048/305A846803A91753 created: 2017-08-14 expires: 2018-08-14
ssb rsa2048/300BA8EE1B5EDEED created: 2017-08-14 expires: 2018-08-14

You can now shut Tails down.

6.3.10 Using the Keys

To actually use the keys on the security token, we need to do four more
minor things.

First, plug the security token into your computer, and run --card-status.
This command makes sure that gpg can actually see the card:

$ gpg --card-status
Reader: SCM Microsystems Inc. SPR 532 [Vendor Interface] (21251019201732) 01 00
Application ID ...: D276000124010201000500002D9D0000
Version: 2.1
Manufacturer: ZeitControl
Serial number: 00002D9D
Name of cardholder: [not set]
Language prefs ...: de
Sex: unspecified
URL of public key : [not set]
Login data: [not set]
Signature PIN: forced
Key attributes ...: rsa2048 rsa2048 rsa2048
Max. PIN lengths .: 32 32 32
PIN retry counter : 3 0 3
Signature counter : 0
Signature key: A17A D462 C473 51AD D0E8 988B 305A 8468 03A9 1753

created: 2017-08-14 13:07:49
Encryption key....: C9CD 8F3D ECDE BB7E 720A 7CD9 F8D8 ED7B B1A2 A8F6

created: 2017-08-14 13:07:32
Authentication key: 9308 3590 BCD9 3CC5 044C BEAD 300B A8EE 1B5E DEED

created: 2017-08-14 13:08:04
General key info..: [none]

Although the security token is recognized (and the keys are loaded),
you can’t yet use the keys, because gpg is missing the public keys. Insert
and mount the sneaker net device, and import them:

80 CHAPTER 6. KEY CREATION

$ gpg --import /media/juliet/sneaker-net/635D6A0EA043F835A1FFD9A7E9794A89BDB70380.pub
gpg: Total number processed: 1
gpg: imported: 1

Listing the secret key, we can see that it is now available.

$ gpg -K 635D6A0EA043F835A1FFD9A7E9794A89BDB70380
sec# rsa2048/0xE9794A89BDB70380 2017-08-14 [C] [expires: 2019-08-14]

Key fingerprint = 635D 6A0E A043 F835 A1FF D9A7 E979 4A89 BDB7 0380
uid [unknown] Juliet Capulet <juliet@gnupg.net>
ssb> rsa2048/0xF8D8ED7BB1A2A8F6 2017-08-14 [E] [expires: 2018-08-14]
ssb> rsa2048/0x305A846803A91753 2017-08-14 [S] [expires: 2018-08-14]
ssb> rsa2048/0x300BA8EE1B5EDEED 2017-08-14 [A] [expires: 2018-08-14]

The # after the sec header for the master key means that the master
key is not available; the > next to the ssb keys means that the keys are on
a security token.

Looking at the above output, we also see that the key is not marked
as trusted. In order for certifications by this key to be respected, it is nec-
essary to mark the key as ultimately trusted. This can be done using the
--edit-key interface.

$ gpg --edit-key 635D6A0EA043F835A1FFD9A7E9794A89BDB70380
Secret key is available.
...
gpg> trust
...
Please decide how far you trust this user to correctly verify other users’ keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I don’t know or won’t say
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately
m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y
...

6.3. SECURITY TOKENS 81

Finally, you’ll also want to publish your key so that others can more
easily find it.

$ gpg --send-key 635D6A0EA043F835A1FFD9A7E9794A89BDB70380

6.3.11 Saving the Revocation Certificate

Before unmounting the device, there is one last thing that we need to do:
we need to copy the revocation certificate someplace that is backed up.

$ gpg --import /media/juliet/sneaker-net/635D6A0EA043F835A1FFD9A7E9794A89BDB70380.rev \
> ~/.gnupg
gpg: Total number processed: 1
gpg: imported: 1

6.3.12 Signing Keys with an Offline Master

When it comes to signing keys, having an offline master key is a pain: it is
necessary to download the public keys on a network-connected computer,
transfer them to a removable storage device, sign them on the offline com-
puter, and then move the signatures back to the main computer. The key
signing tool caff partially automates this workflow, but it is still inconve-
nient.

For most users, it would be nice to somehow separate the "modify
the key" and "certify other keys" capabilities: only the former capability
is highly sensitive.

With a few small tricks, this is possible. The basic idea is to create a sec-
ondary, certification-only key, which is not offline, and to have the offline
key designate it as a trusted introducer using a so-called trust signature.
Then, you sign other people’s keys using the second key, and ask people
sign your main key. If anyone sets your main key as a trusted introducer,
then they will automatically trust your secondary key by way of the trust
signature. If the second key is somehow compromised, it can be revoked,
and replaced with a new key. And, any signatures can be recreated with
the new key.

To create a certification-only key, do the following:

$ gpg --quick-gen-key ’Juliet Capulet (certification key)’ rsa cert 2y
gpg: key 0xCD6AF594BAA8EF38 marked as ultimately trusted

82 CHAPTER 6. KEY CREATION

gpg: revocation certificate stored as ’/home/us/.gnupg/openpgp-revocs.d/149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38.rev’
public and secret key created and signed.

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a subkey for this purpose.
pub rsa2048/0xCD6AF594BAA8EF38 2017-08-14 [C] [expires: 2019-08-14]

Key fingerprint = 149D 0735 A25E 63B1 EC9F EEBD CD6A F594 BAA8 EF38
uid Juliet Capulet (certification key)

There are two things to note about this key. First, the user ID doesn’t in-
clude an email address. This is useful to prevent people who search the key
servers by email address from finding the wrong key. Although searching
a key server by email address is strongly discouraged, there is no need to
make such users’ lives worse than necessary. Second, the key only includes
a certification-capable key; there are no signing or encryption subkeys. This
prevents people from accidentally encrypting data to your secondary key,
or a misconfigured GnuPG from accidentally using it to generate a signa-
ture.

After creating the key, we need to sign it using the main key. This re-
quires transferring the public key to the offline computer.

$ gpg --export 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38 > \
> /media/juliet/sneaker-net/149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38.pub

Then running the following on the offline computer after remounting
the encrypted file system with the secret key, and the sneaker net file sys-
tem:

$ export GNUPGHOME=/media/amnesia/secret-keys/gnupg
$ gpg --import /media/amnesia/sneaker-net/149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38.pub
gpg: key CD6AF594BAA8EF38: public key "Juliet Capulet (certification key)" imported
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --edit-key 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38
pub rsa2048/CD6AF594BAA8EF38

created: 2017-08-14 expires: 2019-08-14 usage: C
trust: unknown validity: unknown

[unknown] (1). Juliet Capulet (certification key)

6.3. SECURITY TOKENS 83

gpg> tsign

pub rsa2048/CD6AF594BAA8EF38
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: unknown validity: unknown

Primary key fingerprint: 149D 0735 A25E 63B1 EC9F EEBD CD6A F594 BAA8 EF38

Juliet Capulet (certification key)

This key is due to expire on 2019-08-14.
Please decide how far you trust this user to correctly verify other users’ keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I trust marginally
2 = I trust fully

Your selection? 2

Please enter the depth of this trust signature.
A depth greater than 1 allows the key you are signing to make
trust signatures on your behalf.

Your selection? 2

Please enter a domain to restrict this signature, or enter for none.

Your selection?

Are you sure that you want to sign this key with your
key "Juliet Capulet <juliet@gnupg.net>" (E9794A89BDB70380)

Really sign? (y/N) y

gpg> Save changes? (y/N) y
$ gpg --export-options backup \
> --export 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38 > \
> /media/amnesia/sneaker-net/149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38.pub

84 CHAPTER 6. KEY CREATION

Using a value of 2 for the depth parameter to the tsign subcommand
means that anyone who considers the main key to be a trusted introducer
will also consider the certification key to be a trusted introducer. (Using
a value of 1 is equivalent to a normal signature, which simply verifies the
target, but does not claim that the key’s own should be treated as a trusted
introducer.)

It is possible to restrict the domains over which the trusted signature
is valid. But, support for this in GnuPG is incomplete. For instance, this
feature is currently not supported on Windows.

After creating the signature, move the signed public key back to the
main computer, import it, and publish it.

$ gpg --import /media/juliet/sneaker-net/149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38.pub
gpg: key 0xCD6AF594BAA8EF38: "Juliet Capulet (certification key)" 1 new signature
gpg: WARNING: server ’gpg-agent’ is older than us (2.1.18 < 2.1.23-beta10)
gpg: Note: Outdated servers may lack important security fixes.
gpg: Note: Use the command "gpgconf --kill all" to restart them.
gpg: Total number processed: 1
gpg: new signatures: 1
gpg --send-key 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38

It is also a good idea to have the certification key cross sign the main
key. (The -u option indicates what key to use for the signature. This is
useful if you have multiple keys.)

$ gpg -u 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38 \
> --edit-key 635D6A0EA043F835A1FFD9A7E9794A89BDB70380
Secret key is available.

pub rsa2048/0xE9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb rsa2048/0xF8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E
card-no: 0005 00002D9D

ssb rsa2048/0x305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S
card-no: 0005 00002D9D

ssb rsa2048/0x300BA8EE1B5EDEED

6.4. KEY EXPIRATION 85

created: 2017-08-14 expires: 2018-08-14 usage: A
card-no: 0005 00002D9D

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> sign

pub rsa2048/0xE9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

Primary key fingerprint: 635D 6A0E A043 F835 A1FF D9A7 E979 4A89 BDB7 0380

Juliet Capulet <juliet@gnupg.net>

This key is due to expire on 2019-08-14.
Are you sure that you want to sign this key with your
key "Juliet Capulet (certification key)" (0xCD6AF594BAA8EF38)

Really sign? (y/N) y

gpg> Save changes? (y/N) y

6.4 Key Expiration

OpenPGP includes a key expiry mechanism. An expired key is like a re-
voked key: gpg won’t encrypt a message to it or rely on it. But, unlike
a revocation certificate, the expiry information is published immediately.
Thus, if the user loses access to the key and the revocation certificate, the
key will still eventually be considered invalid. This is particularly useful
for users who uninstall GnuPG without first publishing a revocation cer-
tificate. Another difference is that whereas revocation certificates can’t be
rescinded once they are published, it is possible to change when a key ex-
pires. This is important as keys are intended to be long-term identities, but
the time until a key expires should be relatively short.

As of GnuPG 2.1, GnuPG automatically sets newly created primary
keys to expire in two years. The easiest way to change the expiration time
is to use the --quick-set-expire command. The following command
sets the primary key to expire in two years relative to when the command

86 CHAPTER 6. KEY CREATION

was issued:

$ gpg --quick-set-expire 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38 2y

If the expiration of a subkey needs to be extended, this can be done as
follows:

$ gpg --quick-set-expire 149D0735A25E63B1EC9FEEBDCD6AF594BAA8EF38 2y \
> C9CD8F3DECDEBB7E720A7CD9F8D8ED7BB1A2A8F6

Unfortunately, using --quick-set-expire to extend a subkey’s ex-
piration is only supported since 2.1.22, which was released in July 2017. As
such, this functionality is not supported by the version of GnuPG shipped
with Debian 9 (stretch). In this case, it is necessary to use the expire com-
mand from the --edit-key interface to extend a subkey’s expiration.

After extending a key’s expiration, don’t forget to publish the updated
key (e.g., using --send-key) so that your communication partners see the
change. If the expiration is adjusted on an offline computer, you’ll need to
first export the updated key (--export) to a removable storage device,
and then import it on an online computer.

To better avoid the problems associated with an expired key, it is better
to extend the expiration date two or three months before the expiry so that
any automatic update mechanism picks up the change, before the user sees
an error.

6.5 Subkey Rotation

A user can approximate forward secrecy by regularly rotating her encryp-
tion and signing subkeys [17]. Unfortunately, since endpoint security—not
the cryptography—tends to be the weak point in the system, this only really
makes sense for people who store their keys on a security token. Unfortu-
nately, if you are using a security token, then you won’t be able to store both
your old keys and your new keys on the same token: the OpenPGP card
specification only supports a single encryption key. Although it is possible
to carry multiple security tokens, this is often inconvenient. In particular,
it becomes unmanageable after a few key rotations. Thus, in practice, this
only makes sense if you are willing to forego access to old encrypted data,
which is not how most people use OpenPGP.

6.5. SUBKEY ROTATION 87

Rotating keys is as simple as revoking the old keys, and generating new
subkeys. To revoke a subkey, it is necessary to use the --edit-key inter-
face, select the subkeys to revoke using the key subcommand, and use the
revkey subcommand to revoke the selected subkeys. This is illustrated
below:

$ gpg --edit-key 635D6A0EA043F835A1FFD9A7E9794A89BDB70380
Secret key is available.

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb rsa2048/F8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E

ssb rsa2048/305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S

ssb rsa2048/300BA8EE1B5EDEED
created: 2017-08-14 expires: 2018-08-14 usage: A

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> key * # Select all keys. You can also use key N
to select the Nth subkey.

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

ssb* rsa2048/F8D8ED7BB1A2A8F6
created: 2017-08-14 expires: 2018-08-14 usage: E

ssb* rsa2048/305A846803A91753
created: 2017-08-14 expires: 2018-08-14 usage: S

ssb* rsa2048/300BA8EE1B5EDEED
created: 2017-08-14 expires: 2018-08-14 usage: A

[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

gpg> revkey
Do you really want to revoke the selected subkeys? (y/N) y
Please select the reason for the revocation:

0 = No reason specified

88 CHAPTER 6. KEY CREATION

1 = Key has been compromised
2 = Key is superseded
3 = Key is no longer used
Q = Cancel

Your decision? 2
Enter an optional description; end it with an empty line:
>
Reason for revocation: Key is superseded
(No description given)
Is this okay? (y/N) y

sec rsa2048/E9794A89BDB70380
created: 2017-08-14 expires: 2019-08-14 usage: C
trust: ultimate validity: ultimate

The following key was revoked on 2017-08-15 by RSA key E9794A89BDB70380 Juliet Capulet <juliet@gnupg.net>
ssb rsa2048/F8D8ED7BB1A2A8F6

created: 2017-08-14 revoked: 2017-08-15 usage: E
The following key was revoked on 2017-08-15 by RSA key E9794A89BDB70380 Juliet Capulet <juliet@gnupg.net>
ssb rsa2048/305A846803A91753

created: 2017-08-14 revoked: 2017-08-15 usage: S
The following key was revoked on 2017-08-15 by RSA key E9794A89BDB70380 Juliet Capulet <juliet@gnupg.net>
ssb rsa2048/300BA8EE1B5EDEED

created: 2017-08-14 revoked: 2017-08-15 usage: A
[ultimate] (1). Juliet Capulet <juliet@gnupg.net>

Chapter 7

Validating Keys

Why is validation important? (What is a MitM attack? Why can’t keys be
validated by a machine?)

How validation works on the web: x509—centralized and completely
broken.

Traditional way to do this in the OpenPGP world is to use WoT. De-
scribe how the WoT works. Talk about why it is hard to use: Key signing
parties are for geeks. Even exchanging fingerprints in person is inconve-
nient.

Alternatives? If you don’t already have the key on a business card, just
pick up the phone (note: --with-icao-spelling). Talk about why us-
ing the same medium for getting fingerprint is not good. If you want to
send an email, then it might be reasonable to use, say, twitter direct mes-
sages to boot strap a conversation. Both are much more secure than no
check. How to sign (--sign-key and --lsign-key).

Talk about TOFU as an alternative. It’s limitation. Nevertheless, in prac-
tice, probably good. New trust model (since v2.1.10, Dec. 2015). Checks
identity / key consistency. Model used by ssh. No user support required.
To enable, add the following to gpg.conf: trust-model tofu+pgp.
Can also set tofu-default-policy good.

Talk about direct trust and trust always and what they are good for.

Talk about how to verify: a specific short key ID can be faked in just a
few seconds. Even a long key ids are not immune to collisions. Talk about
evil32 / scallion tool.

89

90 CHAPTER 7. VALIDATING KEYS

7.1 Key Discovery

How do you find a key? Traditionally, there are two ways: either via a
business card or web site or by looking on a key server. The former is good,
but inconvenient the latter is very, very bad. Key servers are not trusted.
Anyone can forge a user id, etc. Talk about WKD and how it works. Given
examples of how to deploy WKD.

Talk about keybase.io, Autocrypt, and pEp.

Chapter 8

GnuPG’s Architecture

Talk about GnuPG’s split architecture. Explain why it is important to sep-
arate gpg from gpg-agent, scdaemon, pinentry and dirmngr: Components
in their own address spaces, which reduces impact of bugs (think heart-
bleed).

This is different from 1.4.
GPG is for low security—session encryption, encoding, etc. GPG Agent

for security operations: password manager, private keys, etc. Similar sim-
ilar to PC and smartcard. (In fact, possible to run gpg-agent as a different
user id or on a different machine.)

Smartcard Daemon: Interacts with smartcards (directly or via PC/SC).
Note: typically packaged separately as scdaemon.

Pinentry: for interacting with the user (not only passwords, but also
questions). Started by gpg-agent. Talk about trusted windows and why it
is important. Several different implementations provide tighter integration
with a desktop environment. But, these come at a cost to security (much
more complicated).

Pinentry fallback if there is no GUI. How to set GPG_TTY and why it
is necessary. Talk about different pinentry configuration options and what
they are good for. In particular, talk about how password caching works.
Talk about gpg-preset-passphraase and --loopback related stuff in
this context. Also talk about --keep-tty / --keep-display

Directory manager is really the network component. Interacts with
key servers (HKP, ldap, http) (--search-keys email@example.com,
--recv-key keyid). Certificate and CRL cache for gpgsm. Talk about
different options. In particular, how to best configure dirmngr with

91

92 CHAPTER 8. GNUPG’S ARCHITECTURE

use-tor, etc.
Give some details about the different sockets.

8.1 gpg-connect-agent

What it does (communicate with the different components). How to use it.
Fact that it exposes a command line interface. Use help to figure out what
to do.

Show how to script with gpg-connect-agent, e.g., shutting down a
server.

8.2 signals

Talk about how e.g. SIGUSR1 can be used to cause gpg-agent to dump
debugging information.

8.3 Assuan

Talk about Assuan. IPC protocol Pipe / socket based. Very simple, text-
based interface. No interface definition language (IDL). Show example of a
pinentry session calling getpin.

Can use gpg-connect-agent to connect to the running GPG Agent.
Assuan is a separate package from gpg. Anyone can use it.

8.4 Debugging

Due to the distributed nature of the architecture, it can be hard to figure out
what went wrong (error messages become more generic as they are passed
further along the stack).

watchgnupg helps. Tool for gathering log entries.
In gpg-agent.conf, add:

• log-file socket:///home/USER/.gnupg/S.log

• debug-level basic (or advanced or expert)

8.5. CONFIGURATION 93

Run: watchgnupg -\:\!-force /home/USER/.gnupg/S.log
How to setup a test environment. (Talk about GNUPGHOME / --homedir

and where the daemons live.)

8.5 configuration

Talk about gpg.conf, gpg-agent.conf, etc.
Talk about gpgconf.

94 CHAPTER 8. GNUPG’S ARCHITECTURE

Chapter 9

Good Practices and Tips

9.1 Refresh keys.

When you get a signed message, fetch the key.
Refresh keys regularly. Why? New preferences. Revocation certificates.

WoT updates.
Note: Don’t use gpg --refresh-keys. Install parcimonie. Uses tor.

Random intervals between each key refresh reduces chance of targetted
attacks and leaking who you are sending messages to.

9.2 Key Disclosure

What to do if you have to disclose the encryption key for a message? Don’t
disclose your private key! This allows decryption of all messages. Just
disclose the session key. Show example of --show-session-key.

9.3 Backups

Don’t backup the RNG’s seed! Exclude .gnupg/random_seed from
backups!

9.4 ssh

Keys Instead of Passwords. Using keys means password is not sent to
server. Ever enter password for a different server? You’ve just disclosed

95

96 CHAPTER 9. GOOD PRACTICES AND TIPS

your password!
OpenSSH stores private keys on hard drive. Keys are protected by a

passphrase. Passphrase is cached by ssh agent.
GnuPG implements the ssh agent protocol. GnuPG can use keys stored

on a smart card.
GnuPG’s ssh agent: configuration:
Set SSH_AUTH_SOCK in .bashrc:

export SSH_AUTH_SOCK=$HOME/.gnupg/S.gpg-agent.ssh

Add enable-ssh-support to ~.gnupg/gpg-agent.conf. Restart
gpg agent. Add public key to .ssh/authorized_keys file. public key
obtained by doing:

$ ssh-add -L
ssh-rsa AAAAB3NzaC1...zyt cardno:000603016636

9.5 Remote gpg-agent

gpg can use a remote gpg-agent. Running on another computer or as a
different user.

• Create a new user, gpg

• On secure pc, add the following to .gnupg/gpg-agent.conf:

extra-socket /home/gpg/.gnupg/S.gpg-agent-remote

On insecure pc, run the following to forward the port:

$ ssh -f -o ExitOnForwardFailure=yes -o StreamLocalBindUnlink=yes \
> -L /home/neal/.gnupg/S.gpg-agent:/home/gpg/.gnupg/S.gpg-agent-remote
> gpg@localhost bash -c ’{ while sleep 5; do echo NOP; done } | gpg-connect-agent’

Requires at least version 6.7 OpenSSH, which supports forwarding
Unix Domain Sockets.

Note: If forwarding fails, exit. If the socket to be forwarded already
exists.

Forwards the file .../S.gpg-agent on the insecure host to the file
.../S.gpg-agent-remote on the secure host.

9.5. REMOTE GPG-AGENT 97

Note: ssh won’t expand tildes.
Loop keeps connection opened and port forwarded. (Could also use

autossh.) Exits when gpg-agent exits.

98 CHAPTER 9. GOOD PRACTICES AND TIPS

Chapter 10

MUA Integration

This chapter contains guidelines on integrating GnuPG into a mail user
agent (MUA). Other good sources of information on this topic are exist-
ing MUAs, in particular, KMail and Enigmail, which probably have the
best GnuPG integration. This is not to say that our recommendations or
what KMail and Enigmail implement are optimal. Far from it. A common
criticism of GnuPG is how difficult it is to use. We acknowledge these crit-
icisms, and we particularly welcome help in this area. Nevertheless, we
suspect that some of the user interactions cannot be significantly simplified
without compromising the security of the system, which has traditionally
been designed to protect the user from an active adversary.

Most people do not have active adversaries. This is particularly true
in democratic countries. People who live in these places primarily turn to
a technology like GnuPG to protect their privacy, thwart phishing excur-
sions, or fight mass surveillance. These users do not have the same secu-
rity requirements as journalists, activists, or lawyers operating in regimes
where civil rights are not respected, and a single unencrypted message can
result in jail time, or worse.

Given these different classes of users, it is entirely reasonable to simplify
some of the proposed interaction patterns for those who are only interested
in protecting their privacy by using encryption opportunistically [26]. This
is precisely what the Autocrypt project is trying to accomplish. Their hope
is that trading protection from active adversaries for increased ease of use
will result in greater adoption of encrypted email by people looking to pro-
tect their privacy, and fight mass surveillance, but don’t want to be both-
ered with security issues [27].

99

100 CHAPTER 10. MUA INTEGRATION

Simplifying user interactions needs to be done carefully. People cur-
rently associate GnuPG and related tools as providing high levels of pro-
tection, and may assume that because these new interfaces use GnuPG that
they provide the same level of protection. As such, we recommend the
MUA make clear to users what level of protection the interface can offer.
This could be done using a warning, but text that resembles an EULA is un-
likely to be read [28]. Another approach to this problem is to ask the user to
choose a profile that best matches their needs (i.e., their threat model), and
then adjust defaults accordingly. This is the approach that the Tor Browser
Bundle takes. This has the added benefit of causing users to think about
risk assessment. The MUA need not support all of the profiles that it shows.
Then, if the MUA does not support the user’s threat model, the user should
be warned.

In the GnuPG context, three profiles appear to be called for:

• Very Strong Security: Some users turn to GnuPG, because they fear
targeted attacks from a nation state adversary including rubber-hose
cryptoanalysis (i.e., the use of torture to recover passwords). These
users should almost certainly use a security token, which the MUA
should help them configure, HTML should be disabled, and all op-
erations that could leak sensitive information should require explicit
confirmation. The MUA should also help these users implement for-
ward secrecy (by regularly rotating subkeys), provide a mechanism
to automatically purge old emails, and disable indexing encrypted
emails.

• Strong Security: Some users need protection from less sophisticated
adversaries. For instance, lawyers worry that their communication
with their clients may be spied on by criminal groups or corrupt gov-
ernment organizations. Although these users rely on encryption to
protect sensitive communication, they also send and receive a lot of
unencrypted email, and they don’t want to be overly inconvenienced
when processing those messages. Consequently, these users should
have to confirm sending unencrypted mails when keys appear to be
available, and using unverified keys should require confirmation.

• Privacy Preserving: Many people, especially those living in function-
ing democracies, aren’t particularly worried about their safety. In-
stead, they turn to a tool like GnuPG, because they are concerned

10.1. INTEGRATION 101

about their privacy, and mass surveillance. Other reasons include the
need to occasionally send a password by email, and a desire for pro-
tection from drive-by phishing expeditions (although since few or-
ganizations currently sign their email, this is more wishful thinking
than practical protection).

With few exceptions, the MUA should avoid interrupting these users
with security questions. One exception is when the user follows up
to an encrypted email, but the reply won’t be sent in an encrypted
manner. Since the sender encrypted the email, it might be for a good
reason and, consistent with the do no harm principle, the user should
not accidentally endanger her communication partner, or the subject
of the mail.

This doesn’t mean that the encryption should entirely disappear into
the background. The MUA should still help the user understand
what is going on, and allow the user to provide input, if desired.
For instance, like a web browser, the MUA should indicate whether a
message is secure. And, if the user clicks on the icon, she should get
more information, and have the option to verify her communication
partner’s identity. In other words, security should largely be opt-in.

The trade off that these profiles make is straightforward: someone who
requires more security is more sensitive to a mistake, and is more willing
to interact with the system to ensure this security. For people who have
lower security requirements, not only are these interactions annoying, they
can actually hurt security elsewhere: showing dialog boxes that are simply
clicked away results in habituation [29, 28].

Communication, of course, necessarily involves multiple parties. Thus,
if a user with high security requirements communicates with a user with
low security requirements, the casual user could accidentally compromise
the careful user by forgetting to encrypt an email. Thus, consistent with
the do-no-harm principle, it is important that even an implementation de-
signed for users with low security requirements not be too lax.

10.1 Integration

There are two basic ways to add GnuPG support to a MUA: it can be added
natively, or it can be added via a plug-in. KMail, and Claws are examples

102 CHAPTER 10. MUA INTEGRATION

of MUAs that have native GnuPG support; Enigmail, GPGTools, and gpgol
are examples of plug-ins.

One approach isn’t necessarily better than the other. But, the develop-
ment of plug-ins tends to be highly divorced from the actual development
of the MUA with the practical result that the needs of the plug-in are often
not sufficiently taken into account by the MUA developers. This has been
a problem for the Enigmail developers, for instance.

One common problem is controlling how messages are rendered: the
GnuPG support code needs a lot of control over this. This control is nec-
essary to prevent mimicry attacks. For instance, it is necessary to not only
show when a message is verified, but also prevent an attacker from craft-
ing a message that appears to be verified. One way to accomplish this is to
style not only the message, but also the chrome around the message.

The things that need to be added to a MUA for reasonable GnuPG sup-
port is not long: there needs to be a way to create a key, encrypt messages,
verify messages, and do some basic key management. But, all of these
things have numerous gotchas that can negatively impact both the user ex-
perience, and the security of the system. The point of this chapter is to
point out these issues to avoid making developers—or worse, their users—
rediscover these problems the hard way.

10.2 Key Creation

When a GnuPG-enabled MUA is started, it would seem logical to prompt
the user to create or import a key if the user has not already done so. This
behavior is reasonable if the user has explicitly enabled GnuPG support by
installing a plug-in. However, if the MUA has native GnuPG support, and
it is not certain that all users want to use GnuPG, it may be best to wait to
avoid overwhelming the user during the initial setup.

If a key is not generated immediately, this doesn’t mean that the
GnuPG-related functionality should somehow be hidden or disabled. Even
without a key, it is still possible to verify signatures, and show unsigned
messages as being insecure. Then, if a user clicks on such a security notice,
the MUA can explain why the message is considered insecure, and provide
an option for the user to configure the GnuPG support. Similarly, it is rea-
sonable to present an option to encrypt a message before a key has been
created. If the user selects this option, and there is no key associated with

10.2. KEY CREATION 103

the sending email address, then the MUA should show the key creation
wizard. This significantly improves discoverability.

The key generation wizard should not only allow the user to generate
a new key, but also provide an option to import an existing one. When the
user enters or selects a user ID, the wizard should look for an existing key
with that email address both in the appropriate WKD, and on any config-
ured key servers. If there is a matching key, the wizard should ask the user
if she wants to import the key or really create a new one. Importing the key
might not be possible if the key is a fake, or if the user lost access to the key,
e.g., by formatting the computer, or forgetting the key’s passphrase. Both
are unfortunately rather common for novice users.

When the key generation wizard starts, the user ID should default
to the current identity. For instance, if the user has the email addresses
alice@posteo.de and alice@gnupg.net, and clicks on encrypt while
composing an email from alice@gnupg.net, the wizard should default
to creating a key for alice@gnupg.net. If Alice selects a different iden-
tity, then the wizard should explain why the key won’t be usable for the
email she is currently composing.

If the user already has a key, but not one for the current identity, it is
reasonable for the key creation wizard to offer to add the identity to the
existing key. However, current thinking in the GnuPG project is that users
require less training when there is a one-to-one mapping of keys and email
addresses than when multiple user IDs are associated with a single key.
For instance, if the MUA offers to add the user ID to an existing key, it
becomes necessary to explain why this might be undesirable, e.g., most
people probably want separate keys for their private, and their work email.
And later, if the user retires her email address, it will become necessary to
explain the difference between revoking the key and revoking a user ID. Of
course, since many users do use keys with multiple user IDs, it is necessary
for the MUA to support such keys, and explain their meaning when signing
keys, for instance.

The key generation wizard should make key creation as easy as possi-
ble by prompting the user for as little information as reasonable. In par-
ticular, the user should not have the option to enter a comment; adding
a comment is almost always inappropriate [18]. Likewise, key generation
parameters should not be configurable. But, the user should be allowed
to choose whether the key is published on the Internet. This requires an
explanation, which can be made by simile: publishing a key on the Inter-

104 CHAPTER 10. MUA INTEGRATION

net is like publishing a telephone number in a phone book, and no one is
checking the submitted entries.

If it is deemed absolutely necessary that the user be able to tweak key
parameters, then the options should be hidden unless the user explicitly
enables some sort of expert mode. The reason is simple: for the most part
changing these parameters doesn’t actually improve the overall security.
For instance, using a 2048-bit RSA key is currently considered sufficiently
secure by multiple authorities [30]. If more security is really needed, then
the user should start by improving their weakest defense, which is almost
certainly their opsec and not the cryptography. Bruce Schneier, for instance,
argues that the Snowden leaks provide strong evidence that the NSA has
not broken strong cryptography. Instead, the NSA appears to get the infor-
mation they want by compromising infrastructure and endpoints [21]. The
easiest and probably most effective measure is to use a smartcard instead
of storing the private key material on the computer.

There are also practical reasons for not using an overly large key. Per-
haps the most important one is simply based on performance: it does not
take twice as long to verify a signature generated with a 4096-bit RSA key
than one generated with a 2048-bit RSA key, but about an order of magni-
tude longer. This performance penalty becomes particularly noticeable for
16,384-bit keys.

10.2.1 Revocation Certificate

After creating a key, the wizard should prompt the user to save the key’s
revocation certificate, or offer to print it out (or both!). For users with low
security requirements, it is also reasonable to send the revocation certificate
to the user in an email (along with an explanation of what a revocation cer-
tificate is, and how to publish it). This is the easiest way to make sure the
revocation certificate is stored in multiple places, but it has the disadvan-
tage that it gives anyone who can access the user’s mail the power to revoke
her key. This weakness is problematic, but it is not disastrous: that person
would be able to perform a denial of service attack (other people would
no longer be able to send encrypted messages to the user, and signatures
generated by the key would no longer be considered valid), but could not
assume the user’s identity, or read encrypted messages. And, creating a
new key is straightforward. So, the potential damage is limited, and for
most users probably represents a net win given the benefits of being able to

10.3. EXPIRATION 105

revoke a lost or inaccessible key.

10.3 Expiration

When GnuPG 2.1 creates a new key, the default is to set the key to expire in
two years. Just because a key expires does not mean that the user needs a
new key: the expiration is just an emergency brake if the user loses access to
her key, and can’t publish a revocation certificate. Consequently, the MUA
should support extending a key’s expiration date. This can be done when
the MUA starts. But, since many users rarely restart their MUA, it may be
better to check whenever the key is used.

If the key is about to expire (within, say, three months), the MUA should
extend the expiration. Once the expiration is extended, the key needs to be
uploaded to the key servers or otherwise distributed to the user’s com-
munication partners so that their OpenPGP implementation can take the
change into account.

Since extending a key’s expiry requires making a self-signature, the user
will need to unlock the secret key. This interaction can be hidden by piggy
backing the operation onto some other operation that requires the user to
unlock the key.

For security sensitive users, it may make sense to ask the user if this is
desired. For very high risk users, there should also be an option to rotate
the keys.

10.4 Sending Mail

The mail composition window should have a toggle to "secure" or "encrypt"
the current message. When active, this toggle should actually cause the
message to be encrypted and signed. There should not be a separate toggle
for signing the message. As explained previously in Section 4.4, most users
assume that encrypting includes signing, and don’t understand signing at
all.

The button may have a menu that becomes visible after, for instance,
a long press, which allows the user to select between "Encrypt and Sign",
"Sign-only", "Encrypt-only" and "No protection." However this menu is ac-
tivated, it should be reserved for advanced users, which justifies the poor

106 CHAPTER 10. MUA INTEGRATION

discoverability of this feature: needing to only encrypt or only sign a mes-
sage is relatively specialized, and these users can be expected to have had
training; normal users should only have to choose between a secure, and
an insecure option.

The Mailpile MUA always signs messages, even if they are not en-
crypted. To avoid confusing users who do not have an OpenPGP capa-
ble MUA, Mailpile uses inline signatures when possible, because, with the
exception of one line, the signature shows up at the bottom of the mes-
sage, and users have learned to ignore mumbo jumbo at the end of mes-
sages. Anecdotal evidence suggests that this approach doesn’t impose any
cognative load on users whose MUAs don’t support OpenPGP. When an
inline signature can’t be used, Mailpile exports the signature as an ASCII-
armored blob, adds a description explaining the purpose of the signature,
and names the attachment signature.asc.html. The naming is essen-
tial: if a recipient open the attachment, she sees the explanation, and knows
that she can ignore it. Anecdotal evidence suggests that this also signifi-
cantly reduces the amount of confusion that signatures typically cause.

For users with high security requirements, it makes sense to always en-
able encryption by default, and then require that the user explicitly disable
it if encryption is not desired. This avoids mistakenly sending a message
unencrypted when it should have been encrypted. However, this default
can be annoying for users who do not normally encrypt their mail.

As mentioned earlier, a MUA can deal with this dilemma by setting ap-
propriate defaults for the user’s threat model. But even for low security
users, there are cases in which it is clear that encryption should be enabled
by default. For instance, if the user is replying to an encrypted message,
then encryption should be enabled. In fact, if the user tries to disable en-
cryption, it is reasonable to show a warning of the form: "you are reply-
ing to an encrypted message, do you really want to disable encryption for
your reply?" Similarly, if a recipient consistently sends encrypted mail, or
there is a verified key available, then encryption should probably be turned
on. Although it is appealing to encrypt whenever possible, encryption can
sometimes decrease usability. This is particularly the case for users who
process email on multiple devices, but only a subset of them are able to
decrypt the messages.

An appropriate default can be more difficult to find when there are mul-
tiple recipients. For instance, when a user replies to an encrypted message,
she might not have keys for all of the recipients. But, the application can

10.4. SENDING MAIL 107

help the user find the keys, and, in this case, finding appropriate keys is
actually straightforward: due to the way that OpenPGP encrypts data, the
long key ID of the sender and any recipients will normally be embedded
in the message (specifically, in the PK-ESK packets). Unfortunately, the
key IDs are subject to tampering, but since this requires a more determined
adversary, they are almost certainly much more reliable than simply search-
ing a key server for keys with a particular email address. It is also possible
to try and find the key using WKD, which provides a basic verification
check. Another reason to avoid key servers is that using a key found on a
key server may cause more problems than it solves: the message may be
encrypted, but because it is the wrong key, the intended recipient can’t de-
crypt it. Making decryption unreliable is a sure way to discourage the use
of encryption. Key discovery is covered in more detail in Section 10.6.1.

Sometimes mails include keys as attachments, or references to them. In
such cases, the MUA should either import them automatically or provide
a button to allow the user to import them. But, the keys should always
be imported if they are already available locally: the keys might contain
updates, such as new subkeys, an extended expiration, or a revocation cer-
tificate. This topic is discussed further in Section 10.6.1.

10.4.1 Encryption Keys

To make it clear whether there is a key for a particular recipient, the MUA
should add a small icon, e.g., a padlock, next to each email address. As
usual, to improve discoverability, and provide a reminder to encrypt, this
should always be done, even if encryption for a draft has not yet been en-
abled. In that case, the padlock should also be crossed out. The coloring
and the icon should vary according to the degree to which the key is ver-
ified. (It is important to not only change the color to support colorblind
users.)

We recommend that the UI distinguish between the different degrees of
verification. The web of trust provides three verification levels: a key can
either by fully verified, marginally verified or not verified. (Note: for his-
torical reasons, GnuPG uses the term "trusted" here instead of "verified." To
reduce confusion in this document, we reserve the term trusted for when a
key is not just verified to be controlled by the stated entity, but may act as an
introducer. MUAs should do the same.) And, the TOFU trust model pro-
vides even finer grained verification levels. These distinctions are impor-

108 CHAPTER 10. MUA INTEGRATION

tant for security conscious users, and, as a rule of thumb, marginally veri-
fied keys should not be shown as having the same level of security as fully
verified keys. Instead, fully verified keys should be shown in, say, green,
and partially verified keys should be shown in, say, yellow. If it is somehow
desirable that marginally verified keys have the same security level as fully
verified keys, then the user should explicitly set the marginals-needed
option in her gpg.conf file to 1. In the very least, the UI should distin-
guish between fully verified keys, and not fully verified keys, i.e., if the UI
only shows two states, it should show marginally verified keys the same
way it shows completely unverified keys.

If the TOFU trust model is enabled, the number of days on which a
message has been encrypted to the key plus the number of days on which
a message signed by the key has been verified should be shown next to the
icon. This can be shown in a small bubble subscripting the icon, which is
similar to what Twitter does for showing counts. For large numbers, it is
reasonable to show approximate numbers (e.g., rounding 1132 to 1.1k).

Showing these statistics is important to help users to detect mimicry
attacks, which are often employed by phishers. For instance, if a bank nor-
mally signs their emails, then users hopefully become used to seeing the
count slowly increase. Then, if they get an email that appears to be from
their bank, but the count is 0, they will hopefully become suspicious.

If the user hovers the mouse over the padlock icon or clicks on it, the
MUA should show a short, tweet-length message explaining why the key is
considered verified (or not). If the key is not fully verified, an option to start
a key verification wizard should be provided. If there is a TOFU conflict,
there should be an option to start a TOFU conflict resolution wizard. And, if
there is no key associated with the email address, there should be an option
to start a key discovery wizard. (The wizards are described in Section 10.6.)

10.4.2 BCC Recipients

When sending a mail, if there are any bcc recipients, the MUA should cre-
ate a separate mail for each bcc recipient, and one for the rest. This avoids
having the OpenPGP implementation leak the bcc recipients to the other
recipients. Although it is possible to hide a recipient’s key ID in a message
by using a speculative key ID (e.g., using gpg ’s --throw-keyids option),
this still reveals to the recipients that the message was probably encrypted
to other people. Using separate emails avoids this leak.

10.4. SENDING MAIL 109

10.4.3 Saving Drafts

In general, when a draft—whether it has been marked to be encrypted or
not—is saved on the IMAP server, it should be encrypted to the user. It
should not be encrypted to any recipients; they should only be able to de-
crypt the final version.

It is important to encrypt all drafts even if they that have not been
marked for encryption, because the user’s intent is only known once the
mail has been sent. It may be reasonable to relax this requirement in cases
where it is clear that the user is only using the encryption for privacy pur-
poses. But a safer way to avoid using the private key to decrypt the drafts
is to also either save the session key or an unencrypted copy locally.

10.4.4 Sent Mails

When sending a mail, it is important to also encrypt the mail to the user.
Given the near universal prevalence of a sent folder in MUAs, most users
clearly expect to occasionally be able to later read the mails that they send.
This can be done using gpg ’s encrypt-to option, or, when encrypting
an email, the sender can be specified explicitly.

10.4.5 Attaching Keys

To make it easier for a recipient to reply to a message in an encrypted man-
ner, the MUA should provide an option to attach all public keys she would
need to do so.

Receiving a key can be surprising to users who don’t use or know about
GnuPG. But, if you are encrypting, this is not a concern: you know the
recipient’s MUA understands OpenPGP messages. As such, in these cases,
the keys can be attached automatically.

When attaching a key, it is reasonable to just include a minimal version
of the key. In particular, it doesn’t need to include any certifications, be-
cause once the recipient has the key, it is easy to get the rest of the data
from a key server. A minimal key can be created by providing the op-
tion --export-options export-minimalwhen exporting a key using
gpg.

The user’s key should also always be specified in the OpenPGP header [31].
This is the case whether the mail is encrypted or not. This provides a strong
hint to recipients that the user can work with OpenPGP messages.

110 CHAPTER 10. MUA INTEGRATION

10.5 Reading Mail

When the user opens an email message, it is necessary to identify if the
message is encrypted or signed and to act accordingly. This is relatively
straightforward, but does require a robust MIME parser to to handle all
email. In particular, emails that have been transformed during transport
can be problematic. The more challenging issue is making sure the user un-
derstands whether a message has been transferred securely. As a general
rule of thumb, it is better to be conservative, and indicate that a message
has been transferred insecurely than to incorrectly claim that a message has
been transferred securely when that might not be the case. For instance, in-
stead of attempting to interpret all possible structures, it is better to white
list acceptable structures, and treat deviations as being insecure. Other is-
sues include avoiding unnecessary passphrase prompts, and searching en-
crypted email.

10.5.1 Verifying Messages

Figure 10.1: Padlock icons shown by Firefox and Chromium when a web-
site is transferred securely.

When a user views an email, it is important to communicate whether
the contents were transferred in a secure fashion. In web browsers, this
type of information is usually shown using a small padlock icon in the
address bar.

Firefox, for instance, shows a green padlock if it transferred the website
in an encrypted manner, and it could authenticate the end-point. It uses a
gray padlock with a yellow warning triangle if some—but not all—of the
content was encrypted, and eavesdropping was possible, or if the website
used a self-signed certificate. It uses a gray padlock with red strikethrough
if a man-in-the-middle attack was possible. And it just shows a neutral,

10.5. READING MAIL 111

"more information" icon if TLS was not used at all [32]. There are two im-
portant issues with this scheme.

The first issue is that this scheme conflates encryption and authentica-
tion. Although it might be reasonable to demand that websites that use au-
thentication also use encryption to be considered secure—it simplifies user
training, and doesn’t impose a significant deployment cost—this argument
doesn’t apply in an email setting. Consider, for instance, a company that
wants to sign all of its outgoing emails to help mitigate phishing. In this
scenario, encryption is more of a hindrance than a help: requiring encryp-
tion would mean that the company would have to somehow find the right
encryption key for each of its correspondents. When only providing an
authentication mechanism, not only are the customers’ keys not required,
the customers don’t even need to have a key: they just need the ability to
validate the signature.

The second problem is that a TLS connection that can’t be authenticated
is shown to be worse than a connection that is completely insecure. For in-
stance, until the recent introduction of Let’s Encrypt, website operators who
wanted to offer an encrypted connection to their website, but didn’t want
to pay for a certificate could use a self-signed certificate. Although data
protected by such certificates is not secure in the sense that the end point
can’t be authenticated without user intervention, such certificates enable
encryption, which does protect users from passive surveillance. In other
words, self-signed certificates provide more protection than nothing at all,
but websites that use self-signed certificates are shown as being less secure
than sites that use no protection at all! (Although encrypting is better than
not encrypting, we nevertheless recommend that MUAs show encrypted
and unsigned mails in the same way that they show unencrypted and un-
signed mails to avoid confusing users.)

Happily, at least the Chrome browser does not make this distinction.
And, like Chrome, we strongly recommend that whatever mechanism is
used to show that a mail can’t be authenticated be used for both unsigned
mails, and mails with a signature that can’t be verified. Specifically, we rec-
ommend considering an unencrypted and unsigned email to be the base-
line, and that an email is never displayed in such a way that the user would
consider it to be less secure than the baseline, unless there is strong evi-
dence of an attack.

It is reasonable to show unverified messages, and unsigned messages
in a neutral manner, and to show verified messages in a positive man-

112 CHAPTER 10. MUA INTEGRATION

ner. However, it may also be reasonable to show unverified messages,
and unsigned messages in a negative manner. This is how MS Outlook
behaves when S/MIME is enabled. This has the added advantage that it
may prompt the user to learn why the MUA showed the message as being
unsafe.

The first step to checking whether a message is authentic is to check
whether the signing key is verified according to some trust model, e.g., the
web of trust. When verifying an email, another step is required: it is also
necessary to make sure the key is controlled by the sender. This can be done
by checking that the email address in the email’s From header actually ap-
pears in one of the key’s verified user IDs. This is necessary to prevent
an attacker from reusing a message in a different context. For instance,
assuming Romeo trusts his father, his father could write an email that ap-
pears to come from Juliet, but sign it with his own key. If the MUA doesn’t
check that the From header and the signer field agree, then the MUA would
show Romeo that the message is verified. Unfortunately, some mailing lists
rewrite the From header, which will cause this test to gratuitously fail. One
reason for doing this is to improve DMARC compatibility.

Just checking that the sender matches a verified user ID is not actu-
ally enough to prevent all replay and mimicry attacks. It is also neces-
sary to make sure the embedded timestamp is similar to (i.e., within a few
hours of) the email’s timestamp. If the timestamp in the email is years
later than the one embedded in the signature, then the email may be part
of an attempted replay attack. Similarly, it is possible to change the re-
cipient. For instance, Juliet might send the following signed message to
Paris: "Go away, I do not love you!" But, Paris, realizing that Romeo and
Juliet are in love, and hoping to trick Romeo, might simply send a copy
of the message to him with the From header set to Juliet. These types of
attacks can be mitigated by also verifying the mail headers. The Memory
Hole project was started to do exactly this [33]. Unfortunately, the standard
isn’t finished, and work on it appears to have stalled. Nevertheless, there
is enough information to understand the intent, and several mail clients
including Enigmail and Mailpile implement it.

Sometimes, a message may include multiple signatures. Any signatures
from keys that match the email address in the From header should be used
for verification purposes. Other keys may be listed when showing the ver-
ification details.

If the TOFU trust model is enabled, then the TOFU statistics should be

10.5. READING MAIL 113

shown as in the encryption case.

10.5.2 Multi-part Emails

Thanks to inline signatures, it is trivial to make a message that is only par-
tially verifiable.

For simplicity’s sake—we don’t want to confuse the user—it is tempt-
ing to treat such messages as insecure like web browsers do. However,
some companies, and some mailing lists automatically append a footer to
all messages. This modification would change a message that is otherwise
completely verifiable to one that contains a part that isn’t signed. Thus,
messages coming from these sources would never show up as secure.

A straightforward technical solution is to show each section individu-
ally. This can be done using a frame. The frame should be part of the
MUAs chrome and not the message to avoid mimicry attacks. Further, each
part should have an icon, e.g., a padlock, that shows information about the
part’s verification (the degree to which it is verified, and the key’s TOFU
statistics), and that, when clicked, shows a menu allowing the user to get
more information, and find the key if it is missing, verify the key if it is
present, or resolve a TOFU conflict, as appropriate.

To further distinguish between verified and unverified parts, a special
background can be used. Ideally, the background should be unique for
each user to further frustrate any attempt at a mimicry attack.

Unfortunately, this information rich technical solution may overwhelm
many users. An alternative is to show a single icon at the top that shows the
minimum security level of the individual parts. Since some corporations
and mailing lists attach a small footer to all mails, this should be excluded
from the calculation, but it should not be shown as verified.

The issues raised so far are manageable. Unfortunately, MIME makes
things much more complicated: MIME can not only encode multi-part doc-
uments, but it can also encode rich content that logically consists of mul-
tiple MIME parts only some of which are signed, such as an HTML docu-
ment and images that it references.

If a message includes at least one verified part, then the MUA should
only show those parts that are verified, and warn the user that the message
contained unverified content that is hidden. It is reasonable for the warning
to include an option to show the unverified parts anyway. At that point the
message should be displayed as insecure.

114 CHAPTER 10. MUA INTEGRATION

This suggestion conflicts with our earlier suggestion of showing un-
signed messages in the same way as unverified messages. The best sug-
gestion we have is to show a warning along the lines of "this message is
unverified, show anyway" for unsigned messages. But, since most users
will primarily deal with unsigned mail, this warning will very quickly get
annoying, and lose its value. If security profiles are supported, this op-
tion should only be enabled for users who have very high security require-
ments.

10.5.3 Unencrypted Cache

The OpenPGP email workflow assumes that messages are stored on an un-
trusted server, and thus continue to need protection even after the mail has
been delivered. Supporting this type of workflow is one of the primary rea-
sons that OpenPGP doesn’t provide forward secrecy. There are two major
consequences of this workflow.

First, every time a message is accessed, it needs to be decrypted. This
can lead to many passphrase prompts. These can be largely mitigated by
increasing the amount of time gpg-agent caches passphrases, or by using
a password manager. But, it is also annoying for smartcard users who need
to basically always leave their smartcard inserted, which effectively nulli-
fies a nice security property of smartcards: the user can observe operations,
because they can only be done when the card is inserted.

Second, it is not possible to search encrypted mails. This is a major
usability problem, particularly when the subject line is also obscured as it
should be to avoid accidentally leaking the message’s contents.

Both of these issues can be largely mitigated by caching the unen-
crypted version of each message locally. This assumes, of course, that the
local device is secure. At a minimum, the user should have the mail stored
on an encrypted partition.

10.6 Key Management

There are three main aspects to key management: key discovery, key veri-
fication, and key organization.

10.6. KEY MANAGEMENT 115

10.6.1 Key Discovery

The first requirement for encrypting or verifying a message is having the
appropriate key. There are several ways to find the right key. Unfortu-
nately, most of them make no guarantee that the key that is returned is
the correct key. But some are significantly more difficult for an adversary
to corrupt than others making them at least appropriate for opportunistic
encryption.

Exchanging Fingerprints in Person

The most secure way to find a person’s key is to get it from that person di-
rectly. If a physical meeting is possible, this can be done by exchanging fin-
gerprints in person. At least in the business world, the cost of this exchange
can be driven to zero: because exchanging business cards is a common
practice in this world, adding your fingerprint to your business card makes
securely exchange fingerprints a free byproduct of a well-established ritual.

Having a fingerprint on a business card is not quite enough to use it:
it still needs to be entered into the system. The key discovery wizard can
make this process easier by suggesting possible matches based on what the
user has entered so far. (Possible matches can be found by querying a key
server.)

We recommend having the user enter at least 64-bits worth of the fin-
gerprint before enabling auto completion to ensure that the user checked a
minimal amount of the fingerprint. For instance, it is possible to create a
key with a specific 32-bit key ID in just a few seconds on modern desktop
computers [34].

If the email address is known (and it is probably reasonable to first ask
the user to specify a contact if this is not clear from the context), and there
is at least one matching key, an alternative approach is to show a series
of buttons with fragments of the matching fingerprints, and have the user
select the matching fragments. This idea is illustrated below:

[8F17] [5200] [18A3]
[3DDA] [6396] [8723]
[AACB] [6388] [0BAD]

[None of the above]

116 CHAPTER 10. MUA INTEGRATION

The "none of the above" option is useful if the right key is not on the
key servers, for whatever reason.

A more user-friendly technique could use a webcam and OCR to read
in the fingerprint. From an implementation perspective, this is more de-
manding than scanning a QR code, for instance, but there are many fewer
people who add a QR code containing their fingerprint to their business
card than those who add their fingerprint. But, providing an option to dis-
play a public key using a QR code on screen can be helpful: someone could
scan it.

Picking up the Phone

Exchanging keys in person requires that people actually meet face to face.
This is often not practical. The next best alternative is to pick up the phone.
This approach is appropriate for all but those people who have the high-
est security concerns—those whose threat model includes a real-time voice
imitator. Although this has been technically feasible for years. It requires
precise timing that only a nation-state adversary could afford.

Again, assuming the email address is known, the button grid can be
used to facilitate transcription of the fingerprint.

Searching a Website

Calling someone is not always possible or desirable. In this case, it is some-
times possible to find the person’s key on her website. The caveats are that
even a relatively unsophisticated attacker can often own a website or spoof
it, and because there hasn’t traditionally been a standard place to publish
keys, the MUA can’t actually help the user find it.

In 2016, the GnuPG project published a new key discovery protocol
called the web key directory (WKD). WKD automates, and hardens this
key discovery process. The basic idea is that to find romeo@posteo.de
’s key, Juliet looks for the key associated with romeo@posteo.de in a
database on posteo.de [8]. This protocol relies on the security of TLS,
and the mail provider. The mail provider can currently be held in check by
periodically auditing the database, e.g., periodically fetching your own key
via Tor and making sure it hasn’t been replaced. Eventually, something like
certificate transparency [35] could be added to catch abuse or detect things
like national security letters. The reliance on TLS and its centralized infras-

10.6. KEY MANAGEMENT 117

tructure goes against the philosophy of OpenPGP, but it is acceptable for
people whose threat model is limited to privacy violations, and phishing
excursions.

Currently, the only commercial mail provider that supports WKD is
Posteo, but, as of 2017, there are discussions underway with other mail
providers to add support for this feature.

Searching Key Servers

A seemingly convenient way to find someone’s key is to search for it us-
ing that person’s email address on a public key server. Unfortunately, this
method has very bad security properties: anyone can upload a key to a key
server with any user ID. It is trivial to forge a user ID. In fact, in 2014, all
known keys were cloned with identical short key IDs [34]. But, even if you
are only interested in the privacy aspects of encryption, the key servers are
a bad place to look for keys. Because many people forget their passphrase
or forget to migrate their key to a new computer, the key servers are littered
with seemingly valid keys that are practically unusable. Since someone
searching the key servers doesn’t know what key is correct, these people of-
ten get emails that they can’t decrypt. This is annoying, and causes people
to avoid encryption. Consequently, if a MUA decides to provide support
for looking up keys by their user ID, we strongly advise adding a promi-
nent warning about the possible problems. Further, if this approach must
be used, it is better to encrypt to all matching keys. When the recipient
replies, it is then possible to narrow down the set of potential keys based
on the signature or the PK-ESK packets—assuming there was no man in
the middle attack.

Note: these problems don’t mean that key servers are completely use-
less. Far from it. The problem with key servers is that user IDs are not
authoritative. But, if you have already verified someone’s key, then key
servers are the perfect place to get any updates (e.g., new signatures, re-
vocation certificates, etc.), because cryptography can be used to determine
whether the information really belongs to the key in question.

Exploiting Context and Hints

There are two main places where context can be used to discover poten-
tially useful keys: a signed message indicates what key was used to sign

118 CHAPTER 10. MUA INTEGRATION

it, and an encrypted message usually includes the key IDs of the sender
and other recipients in the PK-ESK packets. Emails also sometimes include
hints about the right keys to use. For instance, some people attach either
their key to the emails that they send (pEp does this by default), or the keys
of all recipients in order to make it easier for people to reply in a multi-party
discuss. Another hint can sometimes be found among a mail’s headers: the
OpenPGP header allows the sender to advertise a key [31].

In theory, there is no reason to not import these keys. Simply importing
a key will not cause it to be considered verified: whether a key is considered
to be verified, is determined exclusively by the trust model, not whether
it happens to be available locally. But, having what is probably the right
key available locally is useful for opportunistic encryption. And, used in
conjunction with the TOFU trust model, it is even possible to bootstrap
some trust over time.

Unfortunately, in practice there are two important issues with harvest-
ing keys.

The first issue is that automatically fetching keys via the network can
be used as a back channel. A sophisticated attacker could create a new key
for each message. When a user fetches the key, the attacker can potentially
learn not only that the user opened the message, but also the user’s IP ad-
dress. This attack can be mitigated by routing this type of traffic via Tor (to
do this, Tor must be installed and GnuPG configured to use it by adding
use-tor to dirmngr.conf). Using Tor not only hides the user’s IP ad-
dress, but also requires the attacker to actually control the user’s preferred
key servers to observe the fetch. This is only feasible by an adversary with
a lot of resources.

Even if automatically fetching keys is disabled, the MUA can still har-
vest this information, and save it in a local database. Then when the user
explicitly searches for the key associated with an email address, say, the
hints can be exploited.

The second issue is that GnuPG doesn’t handle very large key rings
(those with thousands of keys) very well. This manifests itself in two
ways. It shows up as longer random access times: gpg does a linear scan
of the key ring the first time it is accessed. Also, GnuPG’s trust calcula-
tions are done on demand when gpg starts. These calculations can take
minutes on large key rings. And, they are done whenever a new key
or signature is imported, or a key expires or is revoked. When harvest-
ing keys, this can happen very often. Happily, the trust calculations can

10.6. KEY MANAGEMENT 119

be deferred by setting no-auto-check-trustdb in gpg.conf and then
running gpg --check-trustdb periodically, e.g., from something like
cron. But obviously, this means the trust model may not be completely up
to date. However, the only long-term fix is to improve the way that keys
are stored on disk.

Note: gpg can automatically fetch keys needed for verifying signa-
tures by setting the auto-key-retrieve option in gpg.conf, and for
encrypting messages by setting the auto-key-locate option. These op-
tions have the disadvantage that they can potentially block the gpg process
for a relatively long time. Consequently, it is often more appropriate to at-
tempt to fetch the key in the background. In the verification case, the mes-
sage can be rerendered if the key becomes available. And, in the encryp-
tion case, a key should be located in the background when the recipient is
added, not when the message is sent.

Taking Advantage of Trusted Introducers

Designating someone as a trusted introducer means that the user trusts
that person to correctly verify others. Since friends of friends are likely to
be friends as well, it makes sense to proactively fetch any keys that trusted
introducers have signed.

gpg does not do this itself. And, unfortunately, the key servers do not
provide a mechanism to find all keys signed by a particular key. But, since
verification is usually mutual, it is possible to approximate this by fetch-
ing all keys that signed a trusted introducer’s key. The MUA can do this
periodically in the background.

10.6.2 Key Verification

Key verification is essential to the security of the system. Although peo-
ple who are primarily interested in preserving their privacy will not spend
much time on this task, it is essential that the key verification support is
robust for those who depend on it for its security properties.

This requirement first means that it should be easy to start the key ver-
ification wizard in appropriate contexts. For instance, when the user adds
a recipient to an email, as explained above, an icon should be displayed
showing whether there is a key associated with the contact, and, if so, the
degree to which the key is considered verified. Clicking on the icon should

120 CHAPTER 10. MUA INTEGRATION

allow the user to verify the key.
When the key verification wizard is started, it should not just prompt

the user to check the fingerprint, but actually guide the user through the
different ways to obtain a fingerprint. For instance, the following is a bad
idea:

Certify this key?

8F17 7771 18A3 3DDA 9BA4 8E62 AACB 3243 6300 52D9

[Ok] [Cancel]

Instead, the key verification wizard should ask the user how she wants
to confirm the key: using a business card or other printout, or via phone.
This approach educates the user without being patronizing: the user learns
how to verify a fingerprint, and that it is not okay to just click verify without
actually verifying the key.

To prevent the user from simply clicking okay without checking the
fingerprint, we recommend requiring that the user enter at least part of
the fingerprint. This can be done by using the buttons with the fingerprint
fragments, as described above.

Ownertrust

It is strongly recommended that an option to set a key’s ownertrust be
well hidden relative to the key verification option. In fact, it should only
be possible to set the ownertrust if the key in question is already fully
verified (e.g., directly signed). Also, even though there are a few rare cases
where it makes sense, it shouldn’t be possible to set a key to be ultimately
trusted if no secret key material is available.

When the ownertrust option is shown, it must be well explained that
this option is not only about trusting the person, but also trusting how she
verifies keys. For instance, I might trust my best friend when he introduces
me to people in the physical world, but without understanding how he ver-
ifies keys (does he just click on yes to make the padlock green?), I probably
should not set him as a trusted introducer. In practice, the latter is gener-
ally much more difficult for people to judge, because they don’t understand
the process very well themselves, and, given how hard it is to get people

10.6. KEY MANAGEMENT 121

to exchange fingerprints, it is unlikely that we will ever convince them to
discuss their security practices.

Publishing Signatures

The key verification wizard should provide an option to publish the sig-
nature. This should be accompanied by an explanation of what this means
and why this is useful (people who trust you won’t need to manually verify
this fingerprint).

It is also reasonable to provide an option to make a trusted signature
instead of a simple certification. Again, this requires an explanation. This
option should probably only be hidden unless expert mode is enabled.

10.6.3 TOFU Conflict Resolution

Like the web of trust, TOFU is a trust model. The major difference between
the two is that the web of trust provides strong guarantees, but requires
a lot of upfront verification work whereas TOFU builds up trust slowly
over time and is only secure in an asymptotic sense, but requires little user
support. The tofu+pgp trust model should be the default for users with
low security requirements. For backwards compatibility reasons, TOFU
has not been made the default in GnuPG.

Normally, the user only needs to interact with the TOFU trust model to
resolve conflicts—when multiple valid keys have the same email address.
A conflict is a strong sign that a man-in-the-middle attack is underway.
But, it can also just be because the user replaced a key that she could no
longer access or revoke. The only way to resolve this is by asking the user
to verify the key. (When creating a new key, a conflict can be avoided by
either promptly revoking the old one or cross signing the two keys.)

When the user starts the conflict resolution wizard, the wizard should
explain what a conflict is, show the conflicting keys and their statistics, and
explain how to resolve the problem (ideally, the user should call the contact
to verify the fingerprint). Because the user might not be able to resolve the
conflict immediately, it is better to provide a resolve later option, which is
the default, rather than have the user simply accept the key without vali-
dating it.

Note: just because a key has a lot of past usage does not mean that it
is the right key: the man in the middle might just have failed to intercept

122 CHAPTER 10. MUA INTEGRATION

the most recent message. Likewise, the new key is not necessarily the right
one: the man in the middle might just have started the attack.

10.6.4 Address Book Integration

A key ring is effectively a backwards address book: instead of names be-
ing the primary keys, and OpenPGP keys being associated with contacts,
a key ring reverses this. This unusual arrangement can cause novice users
significant confusion. As such, it is better to avoid the key ring as much as
possible, and instead directly integrate keys into the user’s address book.

If the address book supports identities with multiple email addresses,
then it should be possible to associate each email address with a different
key. Also, it should be possible to force messages sent to a particular contact
to be encrypted to multiple keys. This is useful in the case where an email
address acts as an exploder.

It is also useful to keep track of users who appear to use GnuPG. A re-
cent encrypted or signed email is the best indicator, but the presence of the
OpenPGP mail header is also an excellent hint. The presence of a key with
the user’s email address is, however, not sufficient proof that the user can
use GnuPG. This functionality can also be exposed as an option: "always
encrypt to this user."

Chapter 11

Programming with GnuPG

--batch, --status-fd and --command-fd.
Writing tests: use --faked-system-time. (Talk about how it works.)

gpg-compose for creating test data.
Talk about GPGME.

123

124 CHAPTER 11. PROGRAMMING WITH GNUPG

Chapter 12

Misc.

Topics are probably better integrated someplace else:

• gpgv

• /etc/skel/.gnupg

• keyring vs. keybox. Talk about kbxutil.

• What’s a keygrip.

• More tools: encrypted mailing lists (schleuder), form encryption (Ku-
vert),

125

126 CHAPTER 12. MISC.

Bibliography

[1] Neal H. Walfield. GnuPG Stories: Jason Reich from BuzzFeed.
https://youtu.be/oQvP9SXm-ek?t=1m46s, June 2017.

[2] Neal H. Walfield. GnuPG Stories: Micha ’Rysiek’ Woniak from
OCCRP. https://www.youtube.com/watch?v=6DqfWz-KHSI&
feature=youtu.be&t=5m50s, June 2017.

[3] Neal H. Walfield. GnuPG Stories: Cindy Cohn, executive director of
the EFF. https://www.youtube.com/watch?v=IdCiJMc3q80&
feature=youtu.be&t=4m30s, June 2017.

[4] Wikipedia. Linux — wikipedia, the free encyclopedia, 2017. [Online;
accessed 19-July-2017].

[5] Mike Gerwitz. A git horror story: Repository integrity with
signed commits. https://mikegerwitz.com/papers/
git-horror-story.html, February 2017.

[6] Werner Koch. First release. https://lists.gnupg.org/
pipermail/gnupg-devel/1997-December/014131.html, De-
cember 1997.

[7] Wikipedia. Pretty good privacy — wikipedia, the free encyclopedia,
2017. [Online; accessed 19-July-2017].

[8] Werner Koch. OpenPGP Web Key Service. Internet-
Draft draft-koch-openpgp-webkey-service-02, IETF Secre-
tariat, October 2016. https://tools.ietf.org/id/
draft-koch-openpgp-webkey-service-02.txt.

127

https://youtu.be/oQvP9SXm-ek?t=1m46s
https://www.youtube.com/watch?v=6DqfWz-KHSI&feature=youtu.be&t=5m50s
https://www.youtube.com/watch?v=6DqfWz-KHSI&feature=youtu.be&t=5m50s
https://www.youtube.com/watch?v=IdCiJMc3q80&feature=youtu.be&t=4m30s
https://www.youtube.com/watch?v=IdCiJMc3q80&feature=youtu.be&t=4m30s
https://mikegerwitz.com/papers/git-horror-story.html
https://mikegerwitz.com/papers/git-horror-story.html
https://lists.gnupg.org/pipermail/gnupg-devel/1997-December/014131.html
https://lists.gnupg.org/pipermail/gnupg-devel/1997-December/014131.html
https://tools.ietf.org/id/draft-koch-openpgp-webkey-service-02.txt
https://tools.ietf.org/id/draft-koch-openpgp-webkey-service-02.txt

128 BIBLIOGRAPHY

[9] Neal H. Walfield and Werner Koch. TOFU for OpenPGP. In Proceed-
ings of the 9th European Workshop on System Security, EuroSec ’16, pages
2:1–2:6, New York, NY, USA, 2016. ACM.

[10] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. End-to-End
Encrypted Messaging Protocols: An Overview. In Franco Bagnoli,
Anna Satsiou, Ioannis Stavrakakis, Paolo Nesi, Giovanna Pacini, Yan-
ina Welp, Thanassis Tiropanis, and Dominic DiFranzo, editors, Third
International Conference, INSCI 2016 - Internet Science, volume 9934 of
Lecture Notes in Computer Science (LNCS), pages 244 – 254, Florence,
Italy, September 2016. Springer.

[11] OpenPGP Working Group. Charter for working group. https://
datatracker.ietf.org/wg/openpgp/charter/.

[12] Peter Gutmann. [openpgp] expiration impending: <draft-
ietf-openpgp-rfc4880bis-01.txt>. https://www.ietf.org/
mail-archive/web/openpgp/current/msg08863.html,
July 2017.

[13] Serge Mister and Robert Zuccherato. An attack on CFB mode encryp-
tion as used by OpenPGP. 3897:82–94, 2005.

[14] Jon Callas. Re: A review of hash function brittleness in OpenPGP.
https://www.ietf.org/mail-archive/web/openpgp/
current/msg00468.html, January 2009.

[15] Holger P. Krekel, Danial Kahn Gillmor, et al. Autocrypt level 1: En-
abling encryption, avoiding annoyances - bad import. https://
autocrypt.readthedocs.io/en/latest/bad-import.html.

[16] Werner Koch. Clearsign text document with multiple
keys? https://lists.gnupg.org/pipermail/gnupg-users/2013-
July/047118.html, July 2013.

[17] Ian Brown, Adam Back, and Ben Laurie. Forward Secrecy Ex-
tensions for OpenPGP. Internet-Draft draft-brown-pgp-pfs-03, IETF
Secretariat, October 2001. https://tools.ietf.org/html/
draft-brown-pgp-pfs-03.

https://datatracker.ietf.org/wg/openpgp/charter/
https://datatracker.ietf.org/wg/openpgp/charter/
https://www.ietf.org/mail-archive/web/openpgp/current/msg08863.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg08863.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg00468.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg00468.html
https://autocrypt.readthedocs.io/en/latest/bad-import.html
https://autocrypt.readthedocs.io/en/latest/bad-import.html
https://tools.ietf.org/html/draft-brown-pgp-pfs-03
https://tools.ietf.org/html/draft-brown-pgp-pfs-03

BIBLIOGRAPHY 129

[18] Daniel Kahn Gillmor. Openpgp user id comments considered
harmful. https://debian-administration.org/users/dkg/
weblog/97, May 2013.

[19] Daniel Kahn Gillmor. gpg –ask-cert-level considered harmful.
https://debian-administration.org/users/dkg/weblog/
98, May 2013.

[20] Daniel Kahn Gillmor. using openpgp notations to indicate keysigning
practices. https://lists.debian.org/debian-devel/2009/
06/msg00722.html, June 2009.

[21] Bruce Schneier. NSA surveillance: A guide to staying se-
cure. https://www.theguardian.com/world/2013/sep/05/
nsa-how-to-remain-secure-surveillance, September 2013.

[22] Achim Pietig. Functional specification of the openpgp application
on iso smart card operating systems. https://gnupg.org/ftp/
specs/OpenPGP-smart-card-application-3.3.pdf, June
2017.

[23] Jakob Ehrensvärd. Secure hardware vs. open source. https://www.
yubico.com/2016/05/secure-hardware-vs-open-source/,
May 2016. Last accessed: August 2, 2017.

[24] Wikipedia. Dual ec drbg — wikipedia, the free encyclopedia, 2017.
[Online; accessed 2-August-2017].

[25] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clark-
son, William Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Ap-
pelbaum, and Edward W Felten. Lest we remember: cold-boot attacks
on encryption keys. Communications of the ACM, 52(5):91–98, 2009.

[26] V. Dukhovni. Opportunistic Security: Some Protection Most of the
Time. RFC 7435, RFC Editor, December 2014. https://www.
rfc-editor.org/rfc/rfc7435.txt.

[27] Holger P. Krekel, Danial Kahn Gillmor, et al. Autocrypt level 1.
https://autocrypt.readthedocs.io/en/latest/.

[28] Rainer Böhme and Stefan Köpsell. Trained to accept?: A field exper-
iment on consent dialogs. In Proceedings of the SIGCHI Conference on

https://debian-administration.org/users/dkg/weblog/97
https://debian-administration.org/users/dkg/weblog/97
https://debian-administration.org/users/dkg/weblog/98
https://debian-administration.org/users/dkg/weblog/98
https://lists.debian.org/debian-devel/2009/06/msg00722.html
https://lists.debian.org/debian-devel/2009/06/msg00722.html
https://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveillance
https://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveillance
https://gnupg.org/ftp/specs/OpenPGP-smart-card-application-3.3.pdf
https://gnupg.org/ftp/specs/OpenPGP-smart-card-application-3.3.pdf
https://www.yubico.com/2016/05/secure-hardware-vs-open-source/
https://www.yubico.com/2016/05/secure-hardware-vs-open-source/
https://www.rfc-editor.org/rfc/rfc7435.txt
https://www.rfc-editor.org/rfc/rfc7435.txt
https://autocrypt.readthedocs.io/en/latest/

130 BIBLIOGRAPHY

Human Factors in Computing Systems, CHI ’10, pages 2403–2406, New
York, NY, USA, 2010. ACM.

[29] Rainer Böhme and Jens Grossklags. The security cost of cheap user in-
teraction. In Proceedings of the 2011 Workshop on New Security Paradigms
Workshop, NSPW ’11, pages 67–82, New York, NY, USA, 2011. ACM.

[30] Damien Giry. Keylength - cryptographic key length recommendation.
https://www.keylength.com/. Last accessed: July 25, 2017.

[31] Atom Smasher and Simon Josefsson. The "OpenPGP"
mail and news header field. Internet-Draft draft-
josefsson-openpgp-mailnews-header-07, IETF Secretariat,
August 2014. https://tools.ietf.org/html/
draft-josefsson-openpgp-mailnews-header-07.

[32] mozilla support. How do i tell if my connection to a web-
site is secure? https://support.mozilla.org/en-US/
kb/how-do-i-tell-if-my-connection-is-secure. Last ac-
cessed: July 23, 2017.

[33] Daniel Kahn Gillmor et al. Memory hole. http://modernpgp.org/
memoryhole/, https://github.com/ModernPGP/memoryhole.
Last accessed: July 23, 2017.

[34] Richard Klafter and Eric Swanson. Evil 32: Check your gpg
fingerprints. https://evil32.com/, https://www.defcon.
org/html/defcon-22/dc-22-speakers.html#Klafter, Au-
gust 2014. Last accessed: July 28, 2017.

[35] Ben Laurie, Adan Langley, and Emilia Kasper. Certifi-
cate Transparency. RFC 6962, RFC Editor, June 2013.
https://www.rfc-editor.org/rfc/rfc6962.txt, https:
//www.certificate-transparency.org/.

https://www.keylength.com/
https://tools.ietf.org/html/draft-josefsson-openpgp-mailnews-header-07
https://tools.ietf.org/html/draft-josefsson-openpgp-mailnews-header-07
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure
http://modernpgp.org/memoryhole/
http://modernpgp.org/memoryhole/
https://github.com/ModernPGP/memoryhole
https://evil32.com/
https://www.defcon.org/html/defcon-22/dc-22-speakers.html#Klafter
https://www.defcon.org/html/defcon-22/dc-22-speakers.html#Klafter
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/

	I Main Matter
	Introduction
	History
	OpenPGP Criticism
	Usability
	Deniability
	Forward Sececy

	Modern Chat Protocols
	Privacy
	Scope

	A GnuPG Primer
	Cryptography
	OpenPGP
	Data at Rest
	Unbuffered Message Processing
	OpenPGP Messages
	Encryption
	Hybrid Encryption
	Algorithm
	An Encrypted Message

	Signing
	Multiple Signers
	Algorithm
	Example

	Keys
	Multiple Public and Private Key Pairs
	Self Signatures
	Example

	Key Signing
	Local Signatures
	Confidence
	Trusted Introducers
	Non-Revocable Signatures
	Example

	Revocations
	Notations
	Summary

	Passwords
	Diceware

	Key Creation
	Keys Aren't Forever, Revocation Certificates Are
	Backing Up a Revocation Certificate
	Publishing a Revocation Certificate
	Recruiting Your Friends

	Tweaking, Twiddling, and Frobbing
	Security Tokens
	Hardware
	Creating a Key
	Tails
	Initializing the Security Token
	Formatting the Removable Storage Devices
	Generating the Keys
	Saving Your Progress
	Creating a Backup
	Copying the Keys to the Security Token
	Using the Keys
	Saving the Revocation Certificate
	Signing Keys with an Offline Master

	Key Expiration
	 Subkey Rotation

	Validating Keys
	Key Discovery

	GnuPG's Architecture
	gpg-connect-agent
	signals
	Assuan
	Debugging
	configuration

	Good Practices and Tips
	Refresh keys.
	Key Disclosure
	Backups
	ssh
	Remote gpg-agent

	MUA Integration
	Integration
	Key Creation
	Revocation Certificate

	Expiration
	Sending Mail
	Encryption Keys
	BCC Recipients
	Saving Drafts
	Sent Mails
	Attaching Keys

	Reading Mail
	Verifying Messages
	Multi-part Emails
	Unencrypted Cache

	Key Management
	Key Discovery
	Key Verification
	TOFU Conflict Resolution
	Address Book Integration

	Programming with GnuPG
	Misc.

